Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016860206> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3016860206 endingPage "1860" @default.
- W3016860206 startingPage "1849" @default.
- W3016860206 abstract "The paper presents necessity of data pre-processing to process the data set through machine learning algorithms, and it filters the raw data to make the data as in compatible format for analysis purpose. The methods such as mean normalization, feature scaling and dimensionality reduction are used for data smoothing and therefore formatted data set gets processed by learning algorithms to predict best possible outcome as per the analysis. Machine learning became famous for such processing purpose and through unsupervised learning we are capable of processing over various data formats. Such algorithms performance is up-to the mark, but as per the availability of inherent parallel processing through quantum machines, computational speedup can be achieved by designing classical equivalent quantum machine learning algorithms. In this paper, we discussed some of the classical unsupervised learning algorithms, and then we propose the equivalent quantum version of algorithms along with the mathematical justification over the complexity analysis and achieved computational speedup and show the betterment by processing such problems over quantum machines." @default.
- W3016860206 created "2020-04-24" @default.
- W3016860206 creator A5048183837 @default.
- W3016860206 creator A5077270159 @default.
- W3016860206 creator A5078144626 @default.
- W3016860206 date "2020-01-01" @default.
- W3016860206 modified "2023-10-04" @default.
- W3016860206 title "Classical Equivalent Quantum Unsupervised Learning Algorithms" @default.
- W3016860206 cites W1128809682 @default.
- W3016860206 cites W1988369744 @default.
- W3016860206 cites W2051663450 @default.
- W3016860206 cites W2084652510 @default.
- W3016860206 cites W2087864771 @default.
- W3016860206 cites W2124269824 @default.
- W3016860206 cites W2147435884 @default.
- W3016860206 cites W2521267242 @default.
- W3016860206 cites W2559394418 @default.
- W3016860206 cites W2580838454 @default.
- W3016860206 cites W2792315573 @default.
- W3016860206 doi "https://doi.org/10.1016/j.procs.2020.03.204" @default.
- W3016860206 hasPublicationYear "2020" @default.
- W3016860206 type Work @default.
- W3016860206 sameAs 3016860206 @default.
- W3016860206 citedByCount "5" @default.
- W3016860206 countsByYear W30168602062020 @default.
- W3016860206 countsByYear W30168602062021 @default.
- W3016860206 countsByYear W30168602062023 @default.
- W3016860206 crossrefType "journal-article" @default.
- W3016860206 hasAuthorship W3016860206A5048183837 @default.
- W3016860206 hasAuthorship W3016860206A5077270159 @default.
- W3016860206 hasAuthorship W3016860206A5078144626 @default.
- W3016860206 hasBestOaLocation W30168602061 @default.
- W3016860206 hasConcept C11413529 @default.
- W3016860206 hasConcept C119857082 @default.
- W3016860206 hasConcept C121332964 @default.
- W3016860206 hasConcept C136886441 @default.
- W3016860206 hasConcept C137019171 @default.
- W3016860206 hasConcept C144024400 @default.
- W3016860206 hasConcept C154945302 @default.
- W3016860206 hasConcept C173608175 @default.
- W3016860206 hasConcept C19165224 @default.
- W3016860206 hasConcept C2779094486 @default.
- W3016860206 hasConcept C31972630 @default.
- W3016860206 hasConcept C3770464 @default.
- W3016860206 hasConcept C41008148 @default.
- W3016860206 hasConcept C50292564 @default.
- W3016860206 hasConcept C62520636 @default.
- W3016860206 hasConcept C68339613 @default.
- W3016860206 hasConcept C70518039 @default.
- W3016860206 hasConcept C8038995 @default.
- W3016860206 hasConcept C84114770 @default.
- W3016860206 hasConceptScore W3016860206C11413529 @default.
- W3016860206 hasConceptScore W3016860206C119857082 @default.
- W3016860206 hasConceptScore W3016860206C121332964 @default.
- W3016860206 hasConceptScore W3016860206C136886441 @default.
- W3016860206 hasConceptScore W3016860206C137019171 @default.
- W3016860206 hasConceptScore W3016860206C144024400 @default.
- W3016860206 hasConceptScore W3016860206C154945302 @default.
- W3016860206 hasConceptScore W3016860206C173608175 @default.
- W3016860206 hasConceptScore W3016860206C19165224 @default.
- W3016860206 hasConceptScore W3016860206C2779094486 @default.
- W3016860206 hasConceptScore W3016860206C31972630 @default.
- W3016860206 hasConceptScore W3016860206C3770464 @default.
- W3016860206 hasConceptScore W3016860206C41008148 @default.
- W3016860206 hasConceptScore W3016860206C50292564 @default.
- W3016860206 hasConceptScore W3016860206C62520636 @default.
- W3016860206 hasConceptScore W3016860206C68339613 @default.
- W3016860206 hasConceptScore W3016860206C70518039 @default.
- W3016860206 hasConceptScore W3016860206C8038995 @default.
- W3016860206 hasConceptScore W3016860206C84114770 @default.
- W3016860206 hasLocation W30168602061 @default.
- W3016860206 hasOpenAccess W3016860206 @default.
- W3016860206 hasPrimaryLocation W30168602061 @default.
- W3016860206 hasRelatedWork W2954428433 @default.
- W3016860206 hasRelatedWork W2977791234 @default.
- W3016860206 hasRelatedWork W3016860206 @default.
- W3016860206 hasRelatedWork W3046775127 @default.
- W3016860206 hasRelatedWork W3196155444 @default.
- W3016860206 hasRelatedWork W3209574120 @default.
- W3016860206 hasRelatedWork W4294612786 @default.
- W3016860206 hasRelatedWork W4306321456 @default.
- W3016860206 hasRelatedWork W4320063314 @default.
- W3016860206 hasRelatedWork W4386462264 @default.
- W3016860206 hasVolume "167" @default.
- W3016860206 isParatext "false" @default.
- W3016860206 isRetracted "false" @default.
- W3016860206 magId "3016860206" @default.
- W3016860206 workType "article" @default.