Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016903886> ?p ?o ?g. }
- W3016903886 endingPage "615" @default.
- W3016903886 startingPage "600" @default.
- W3016903886 abstract "User-generated data enable businesses to derive competitive intelligence from the perspective of customers. With the advent of favorite data, we propose a sparse biterm-based Dirichlet process model and bipartite graph model with a random walk algorithm to analyze asymmetric competition. Through investigating the asymmetric market structure, representativeness degree of each entity, and competition network, the proposed machine learning models provide managerial insights into market competition. Based on 832,897 customers’ favorite lists, we empirically employ the proposed models to analyze the competition among the 2,204 car models in China's automotive market. Drawing on the activities of many customers in the market, our models enhance firms’ understanding of how the market is segmented by customers, which segments are most popular, and how entities compete with each other within the competition network. We can also inform managers of the segments within which a product competes, the representativeness of its competitors, and the leaders in each segment. The empirical results demonstrate that our models are practical in deriving insights about asymmetric competition for managers." @default.
- W3016903886 created "2020-04-24" @default.
- W3016903886 creator A5004103125 @default.
- W3016903886 creator A5030946475 @default.
- W3016903886 creator A5034732953 @default.
- W3016903886 creator A5066867077 @default.
- W3016903886 date "2020-12-01" @default.
- W3016903886 modified "2023-10-15" @default.
- W3016903886 title "Using favorite data to analyze asymmetric competition: Machine learning models" @default.
- W3016903886 cites W1532904188 @default.
- W3016903886 cites W1969415786 @default.
- W3016903886 cites W1999974018 @default.
- W3016903886 cites W2007680417 @default.
- W3016903886 cites W2014826312 @default.
- W3016903886 cites W2030275442 @default.
- W3016903886 cites W2033062719 @default.
- W3016903886 cites W2046696485 @default.
- W3016903886 cites W2048195127 @default.
- W3016903886 cites W2051381393 @default.
- W3016903886 cites W2065549341 @default.
- W3016903886 cites W2085418099 @default.
- W3016903886 cites W2086627595 @default.
- W3016903886 cites W2100657000 @default.
- W3016903886 cites W2101995379 @default.
- W3016903886 cites W2131452630 @default.
- W3016903886 cites W2152839203 @default.
- W3016903886 cites W2153080265 @default.
- W3016903886 cites W2154882758 @default.
- W3016903886 cites W2182461851 @default.
- W3016903886 cites W2290866645 @default.
- W3016903886 cites W2528173792 @default.
- W3016903886 cites W2558783391 @default.
- W3016903886 cites W2560314775 @default.
- W3016903886 cites W2588565388 @default.
- W3016903886 cites W2597789384 @default.
- W3016903886 cites W2762385132 @default.
- W3016903886 cites W2762685944 @default.
- W3016903886 cites W2770291701 @default.
- W3016903886 cites W2782871443 @default.
- W3016903886 cites W2790207783 @default.
- W3016903886 cites W2804101929 @default.
- W3016903886 cites W2943121181 @default.
- W3016903886 cites W2946495169 @default.
- W3016903886 cites W2965094071 @default.
- W3016903886 cites W2975867066 @default.
- W3016903886 cites W2985465748 @default.
- W3016903886 cites W2991061473 @default.
- W3016903886 cites W3123399111 @default.
- W3016903886 cites W3124773047 @default.
- W3016903886 cites W3125385790 @default.
- W3016903886 cites W80257235 @default.
- W3016903886 doi "https://doi.org/10.1016/j.ejor.2020.03.074" @default.
- W3016903886 hasPublicationYear "2020" @default.
- W3016903886 type Work @default.
- W3016903886 sameAs 3016903886 @default.
- W3016903886 citedByCount "11" @default.
- W3016903886 countsByYear W30169038862020 @default.
- W3016903886 countsByYear W30169038862021 @default.
- W3016903886 countsByYear W30169038862022 @default.
- W3016903886 countsByYear W30169038862023 @default.
- W3016903886 crossrefType "journal-article" @default.
- W3016903886 hasAuthorship W3016903886A5004103125 @default.
- W3016903886 hasAuthorship W3016903886A5030946475 @default.
- W3016903886 hasAuthorship W3016903886A5034732953 @default.
- W3016903886 hasAuthorship W3016903886A5066867077 @default.
- W3016903886 hasConcept C127413603 @default.
- W3016903886 hasConcept C127576917 @default.
- W3016903886 hasConcept C144133560 @default.
- W3016903886 hasConcept C146978453 @default.
- W3016903886 hasConcept C154945302 @default.
- W3016903886 hasConcept C15744967 @default.
- W3016903886 hasConcept C162324750 @default.
- W3016903886 hasConcept C162853370 @default.
- W3016903886 hasConcept C171686336 @default.
- W3016903886 hasConcept C18903297 @default.
- W3016903886 hasConcept C37381756 @default.
- W3016903886 hasConcept C40700 @default.
- W3016903886 hasConcept C41008148 @default.
- W3016903886 hasConcept C500882744 @default.
- W3016903886 hasConcept C526921623 @default.
- W3016903886 hasConcept C77805123 @default.
- W3016903886 hasConcept C86803240 @default.
- W3016903886 hasConcept C91306197 @default.
- W3016903886 hasConceptScore W3016903886C127413603 @default.
- W3016903886 hasConceptScore W3016903886C127576917 @default.
- W3016903886 hasConceptScore W3016903886C144133560 @default.
- W3016903886 hasConceptScore W3016903886C146978453 @default.
- W3016903886 hasConceptScore W3016903886C154945302 @default.
- W3016903886 hasConceptScore W3016903886C15744967 @default.
- W3016903886 hasConceptScore W3016903886C162324750 @default.
- W3016903886 hasConceptScore W3016903886C162853370 @default.
- W3016903886 hasConceptScore W3016903886C171686336 @default.
- W3016903886 hasConceptScore W3016903886C18903297 @default.
- W3016903886 hasConceptScore W3016903886C37381756 @default.
- W3016903886 hasConceptScore W3016903886C40700 @default.
- W3016903886 hasConceptScore W3016903886C41008148 @default.
- W3016903886 hasConceptScore W3016903886C500882744 @default.
- W3016903886 hasConceptScore W3016903886C526921623 @default.