Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016904080> ?p ?o ?g. }
- W3016904080 abstract "Abstract Aberrant social behavior is a core feature of many neuropsychiatric disorders, yet the study of complex social behavior in freely moving rodents is relatively infrequently incorporated into preclinical models. This likely contributes to limited translational impact. A major bottleneck for the adoption of socially complex, ethology-rich, preclinical procedures are the technical limitations for consistently annotating detailed behavioral repertoires of rodent social behavior. Manual annotation is subjective, prone to observer drift, and extremely time-intensive. Commercial approaches are expensive and inferior to manual annotation. Open-source alternatives often require significant investments in specialized hardware and significant computational and programming knowledge. By combining recent computational advances in convolutional neural networks and pose-estimation with further machine learning analysis, complex rodent social behavior is primed for inclusion under the umbrella of computational neuroethology. Here we present an open-source package with graphical interface and workflow (Simple Behavioral Analysis, SimBA) that uses pose-estimation to create supervised machine learning predictive classifiers of rodent social behavior, with millisecond resolution and accuracies that can out-perform human observers. SimBA does not require specialized video acquisition hardware nor extensive computational background. Standard descriptive statistical analysis, along with graphical region of interest annotation, are provided in addition to predictive classifier generation. To increase ease-of-use for behavioural neuroscientists, we designed SimBA with accessible menus for pre-processing videos, annotating behavioural training datasets, selecting advanced machine learning options, robust classifier validation functions and flexible visualizations tools. This allows for predictive classifier transparency, explainability and tunability prior to, and during, experimental use. We demonstrate that this approach is flexible and robust in both mice and rats by classifying social behaviors that are commonly central to the study of brain function and social motivation. Finally, we provide a library of poseestimation weights and behavioral predictive classifiers for resident-intruder behaviors in mice and rats. All code and data, together with detailed tutorials and documentation, are available on the SimBA GitHub repository . Graphical abstract SimBA graphical interface (GUI) for creating supervised machine learning classifiers of rodent social behavior. (a) Pre-process videos . SimBA supports common video pre-processing functions (e.g., cropping, clipping, sampling, format conversion, etc.) that can be performed either on single videos, or as a batch. (b) Managing poseestimation data and creating classification projects . Pose-estimation tracking projects in DeepLabCut and DeepPoseKit can be either imported or created and managed within the SimBA graphical user interface, and the tracking results are imported into SimBA classification projects. SimBA also supports userdrawn region-of-interests (ROIs) for descriptive statistics of animal movements, or as features in machine learning classification projects. (c) Create classifiers, perform classifications, and analyze classification data . SimBA has graphical tools for correcting poseestimation tracking inaccuracies when multiple subjects are within a single frame, annotating behavioral events from videos, and optimizing machine learning hyperparameters and discrimination thresholds. A number of validation checkpoints and logs are included for increased classifier explainability and tunability prior to, and during, experimental use. Both detailed and summary data are provided at the end of classifier analysis. SimBA accepts behavioral annotations generated elsewhere (such as through JWatcher) that can be imported into SimBA classification projects. (d) Visualize classification results . SimBA has several options for visualizing machine learning classifications, animal movements and ROI data, and analyzing the durations and frequencies of classified behaviors. See the SimBA GitHub repository for a comprehensive documentation and user tutorials." @default.
- W3016904080 created "2020-04-24" @default.
- W3016904080 creator A5005595870 @default.
- W3016904080 creator A5018440903 @default.
- W3016904080 creator A5042092580 @default.
- W3016904080 creator A5049909652 @default.
- W3016904080 creator A5050214666 @default.
- W3016904080 creator A5056141889 @default.
- W3016904080 creator A5059060290 @default.
- W3016904080 creator A5060766034 @default.
- W3016904080 creator A5067907313 @default.
- W3016904080 creator A5072459862 @default.
- W3016904080 creator A5074439056 @default.
- W3016904080 creator A5083001883 @default.
- W3016904080 date "2020-04-20" @default.
- W3016904080 modified "2023-10-17" @default.
- W3016904080 title "Simple Behavioral Analysis (SimBA) – an open source toolkit for computer classification of complex social behaviors in experimental animals" @default.
- W3016904080 cites W1928387150 @default.
- W3016904080 cites W1966716734 @default.
- W3016904080 cites W1967067498 @default.
- W3016904080 cites W1974260937 @default.
- W3016904080 cites W1976468890 @default.
- W3016904080 cites W1977514547 @default.
- W3016904080 cites W1977591411 @default.
- W3016904080 cites W1977593923 @default.
- W3016904080 cites W1984024293 @default.
- W3016904080 cites W1993220166 @default.
- W3016904080 cites W1994816641 @default.
- W3016904080 cites W2001457444 @default.
- W3016904080 cites W2008478189 @default.
- W3016904080 cites W2010491620 @default.
- W3016904080 cites W2021466301 @default.
- W3016904080 cites W2024244622 @default.
- W3016904080 cites W2031468801 @default.
- W3016904080 cites W2055989515 @default.
- W3016904080 cites W2070808135 @default.
- W3016904080 cites W2078675462 @default.
- W3016904080 cites W2092060676 @default.
- W3016904080 cites W2093534314 @default.
- W3016904080 cites W2099454382 @default.
- W3016904080 cites W2100058196 @default.
- W3016904080 cites W2116310759 @default.
- W3016904080 cites W2118978333 @default.
- W3016904080 cites W2122244877 @default.
- W3016904080 cites W2133574018 @default.
- W3016904080 cites W2135563396 @default.
- W3016904080 cites W2137155095 @default.
- W3016904080 cites W2148143831 @default.
- W3016904080 cites W2154723612 @default.
- W3016904080 cites W2159639156 @default.
- W3016904080 cites W2164330572 @default.
- W3016904080 cites W2210805002 @default.
- W3016904080 cites W2215323701 @default.
- W3016904080 cites W2219858099 @default.
- W3016904080 cites W2250722538 @default.
- W3016904080 cites W2293446808 @default.
- W3016904080 cites W2296719434 @default.
- W3016904080 cites W2338318698 @default.
- W3016904080 cites W2373652479 @default.
- W3016904080 cites W2409888425 @default.
- W3016904080 cites W2477700617 @default.
- W3016904080 cites W2557245687 @default.
- W3016904080 cites W2589225934 @default.
- W3016904080 cites W2595380526 @default.
- W3016904080 cites W2619240955 @default.
- W3016904080 cites W2622678820 @default.
- W3016904080 cites W2732547613 @default.
- W3016904080 cites W2766854902 @default.
- W3016904080 cites W2768529349 @default.
- W3016904080 cites W2801078999 @default.
- W3016904080 cites W2802314367 @default.
- W3016904080 cites W2887114371 @default.
- W3016904080 cites W2896991425 @default.
- W3016904080 cites W2897863430 @default.
- W3016904080 cites W2904059336 @default.
- W3016904080 cites W2908783938 @default.
- W3016904080 cites W2941352015 @default.
- W3016904080 cites W2944054712 @default.
- W3016904080 cites W2944216833 @default.
- W3016904080 cites W2944851242 @default.
- W3016904080 cites W2945526235 @default.
- W3016904080 cites W2952956973 @default.
- W3016904080 cites W2953234091 @default.
- W3016904080 cites W2955800271 @default.
- W3016904080 cites W2966362508 @default.
- W3016904080 cites W2980030724 @default.
- W3016904080 cites W2995220461 @default.
- W3016904080 cites W2997429452 @default.
- W3016904080 cites W2999615587 @default.
- W3016904080 cites W3002993892 @default.
- W3016904080 cites W3014008473 @default.
- W3016904080 cites W3014953422 @default.
- W3016904080 cites W4237515889 @default.
- W3016904080 cites W4241452927 @default.
- W3016904080 cites W4300009529 @default.
- W3016904080 doi "https://doi.org/10.1101/2020.04.19.049452" @default.
- W3016904080 hasPublicationYear "2020" @default.
- W3016904080 type Work @default.
- W3016904080 sameAs 3016904080 @default.
- W3016904080 citedByCount "113" @default.