Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016908833> ?p ?o ?g. }
- W3016908833 endingPage "3529" @default.
- W3016908833 startingPage "3513" @default.
- W3016908833 abstract "We use artificial neural networks (ANNs) based on the Boltzmann machine (BM) architectures as an encoder of ab initio molecular many-electron wave functions represented with the complete active space configuration interaction (CAS-CI) model. As first introduced by the work of Carleo and Troyer for physical systems, the coefficients of the electronic configurations in the CI expansion are parametrized with the BMs as a function of their occupancies that act as descriptors. This ANN-based wave function ansatz is referred to as the neural-network quantum state (NQS). The machine learning is used for training the BMs in terms of finding a variationally optimal form of the ground-state wave function on the basis of the energy minimization. It is relevant to reinforcement learning and does not use any reference data nor prior knowledge of the wave function, while the Hamiltonian is given based on a user-specified chemical structure in the first-principles manner. Carleo and Troyer used the restricted Boltzmann machine (RBM), which has hidden units, for the neural network architecture of NQS, while, in this study, we further introduce its replacement with the BM that has only visible units but with different orders of connectivity. For this hidden-node free BM, the second- and third-order BMs based on quadratic and cubic energy functions, respectively, were implemented. We denote these second- and third-order BMs as BM2 and BM3, respectively. The pilot implementation of the NQS solver into an exact diagonalization module of the quantum chemistry program was made to assess the capability of variants of the BM-based NQS. The test calculations were performed by determining the CAS-CI wave functions of illustrative molecular systems, indocyanine green, and dinitrogen dissociation. The simulated energies have been shown to converge to CAS-CI energy in most cases by improving RBM with an increasing number of hidden nodes. BM3 systematically yields lower energies than BM2, reproducing the CAS-CI energies of dinitrogen across potential energy curves within an error of 50 μEh." @default.
- W3016908833 created "2020-04-24" @default.
- W3016908833 creator A5002069874 @default.
- W3016908833 creator A5033129126 @default.
- W3016908833 creator A5066053285 @default.
- W3016908833 creator A5070597006 @default.
- W3016908833 date "2020-04-22" @default.
- W3016908833 modified "2023-10-17" @default.
- W3016908833 title "Artificial Neural Networks Applied as Molecular Wave Function Solvers" @default.
- W3016908833 cites W1641020902 @default.
- W3016908833 cites W1779932818 @default.
- W3016908833 cites W1965288006 @default.
- W3016908833 cites W1976879565 @default.
- W3016908833 cites W2016407890 @default.
- W3016908833 cites W2037768897 @default.
- W3016908833 cites W2039862840 @default.
- W3016908833 cites W2053987271 @default.
- W3016908833 cites W2058317428 @default.
- W3016908833 cites W2064630666 @default.
- W3016908833 cites W2070448469 @default.
- W3016908833 cites W2096391265 @default.
- W3016908833 cites W2100495367 @default.
- W3016908833 cites W2124053504 @default.
- W3016908833 cites W2166364272 @default.
- W3016908833 cites W2361647693 @default.
- W3016908833 cites W2414456771 @default.
- W3016908833 cites W2419175238 @default.
- W3016908833 cites W2499071604 @default.
- W3016908833 cites W2592893046 @default.
- W3016908833 cites W2599154196 @default.
- W3016908833 cites W2606363443 @default.
- W3016908833 cites W2610038766 @default.
- W3016908833 cites W2742271598 @default.
- W3016908833 cites W2747592475 @default.
- W3016908833 cites W2750458571 @default.
- W3016908833 cites W2754589832 @default.
- W3016908833 cites W2755695124 @default.
- W3016908833 cites W2775714759 @default.
- W3016908833 cites W2785478418 @default.
- W3016908833 cites W2810729069 @default.
- W3016908833 cites W2855672246 @default.
- W3016908833 cites W2885400989 @default.
- W3016908833 cites W2941207252 @default.
- W3016908833 cites W2951696038 @default.
- W3016908833 cites W2953636677 @default.
- W3016908833 cites W2957315070 @default.
- W3016908833 cites W2963536736 @default.
- W3016908833 cites W2963644788 @default.
- W3016908833 cites W2981035673 @default.
- W3016908833 cites W3098288778 @default.
- W3016908833 cites W3098768946 @default.
- W3016908833 cites W3098902950 @default.
- W3016908833 cites W3099013266 @default.
- W3016908833 cites W3101214870 @default.
- W3016908833 cites W3103713775 @default.
- W3016908833 cites W3103863530 @default.
- W3016908833 cites W3104481216 @default.
- W3016908833 cites W3104496372 @default.
- W3016908833 cites W3104577764 @default.
- W3016908833 cites W3105047985 @default.
- W3016908833 cites W3106011565 @default.
- W3016908833 doi "https://doi.org/10.1021/acs.jctc.9b01132" @default.
- W3016908833 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32320233" @default.
- W3016908833 hasPublicationYear "2020" @default.
- W3016908833 type Work @default.
- W3016908833 sameAs 3016908833 @default.
- W3016908833 citedByCount "18" @default.
- W3016908833 countsByYear W30169088332020 @default.
- W3016908833 countsByYear W30169088332021 @default.
- W3016908833 countsByYear W30169088332022 @default.
- W3016908833 countsByYear W30169088332023 @default.
- W3016908833 crossrefType "journal-article" @default.
- W3016908833 hasAuthorship W3016908833A5002069874 @default.
- W3016908833 hasAuthorship W3016908833A5033129126 @default.
- W3016908833 hasAuthorship W3016908833A5066053285 @default.
- W3016908833 hasAuthorship W3016908833A5070597006 @default.
- W3016908833 hasConcept C113603373 @default.
- W3016908833 hasConcept C114614502 @default.
- W3016908833 hasConcept C121332964 @default.
- W3016908833 hasConcept C126255220 @default.
- W3016908833 hasConcept C130787639 @default.
- W3016908833 hasConcept C130979935 @default.
- W3016908833 hasConcept C154945302 @default.
- W3016908833 hasConcept C184720557 @default.
- W3016908833 hasConcept C192576344 @default.
- W3016908833 hasConcept C199354608 @default.
- W3016908833 hasConcept C199360897 @default.
- W3016908833 hasConcept C2778770139 @default.
- W3016908833 hasConcept C33923547 @default.
- W3016908833 hasConcept C41008148 @default.
- W3016908833 hasConcept C459310 @default.
- W3016908833 hasConcept C50644808 @default.
- W3016908833 hasConcept C62520636 @default.
- W3016908833 hasConceptScore W3016908833C113603373 @default.
- W3016908833 hasConceptScore W3016908833C114614502 @default.
- W3016908833 hasConceptScore W3016908833C121332964 @default.
- W3016908833 hasConceptScore W3016908833C126255220 @default.
- W3016908833 hasConceptScore W3016908833C130787639 @default.