Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016931901> ?p ?o ?g. }
- W3016931901 abstract "Internet of Vehicles (IoV) is a promising branch of the Internet of Things. IoV simulates a large variety of crowdsourcing applications such as Waze, Uber, and Amazon Mechanical Turk, etc. Users of these applications report the real-time traffic information to the cloud server which trains a machine learning model based on traffic information reported by users for intelligent traffic management. However, crowdsourcing application owners can easily infer users' location information, which raises severe location privacy concerns of the users. In addition, as the number of vehicles increases, the frequent communication between vehicles and the cloud server incurs unexpected amount of communication cost. To avoid the privacy threat and reduce the communication cost, in this paper, we propose to integrate federated learning and local differential privacy (LDP) to facilitate the crowdsourcing applications to achieve the machine learning model. Specifically, we propose four LDP mechanisms to perturb gradients generated by vehicles. The Three-Outputs mechanism is proposed which introduces three different output possibilities to deliver a high accuracy when the privacy budget is small. The output possibilities of Three-Outputs can be encoded with two bits to reduce the communication cost. Besides, to maximize the performance when the privacy budget is large, an optimal piecewise mechanism (PM-OPT) is proposed. We further propose a suboptimal mechanism (PM-SUB) with a simple formula and comparable utility to PM-OPT. Then, we build a novel hybrid mechanism by combining Three-Outputs and PM-SUB." @default.
- W3016931901 created "2020-04-24" @default.
- W3016931901 creator A5019685555 @default.
- W3016931901 creator A5043839950 @default.
- W3016931901 creator A5052577882 @default.
- W3016931901 creator A5060038549 @default.
- W3016931901 creator A5071321132 @default.
- W3016931901 creator A5081977970 @default.
- W3016931901 creator A5087351635 @default.
- W3016931901 creator A5091266202 @default.
- W3016931901 date "2020-04-19" @default.
- W3016931901 modified "2023-10-18" @default.
- W3016931901 title "Local Differential Privacy based Federated Learning for Internet of Things" @default.
- W3016931901 cites W1735670010 @default.
- W3016931901 cites W1873763122 @default.
- W3016931901 cites W1966072539 @default.
- W3016931901 cites W1993116423 @default.
- W3016931901 cites W2017634428 @default.
- W3016931901 cites W2024622963 @default.
- W3016931901 cites W2027595342 @default.
- W3016931901 cites W2051267297 @default.
- W3016931901 cites W2103096545 @default.
- W3016931901 cites W2157017541 @default.
- W3016931901 cites W2248469562 @default.
- W3016931901 cites W2283463896 @default.
- W3016931901 cites W2336650964 @default.
- W3016931901 cites W2541884796 @default.
- W3016931901 cites W2551592225 @default.
- W3016931901 cites W2584956383 @default.
- W3016931901 cites W2591882872 @default.
- W3016931901 cites W2742225091 @default.
- W3016931901 cites W2784621220 @default.
- W3016931901 cites W2884661045 @default.
- W3016931901 cites W2898040395 @default.
- W3016931901 cites W2912931016 @default.
- W3016931901 cites W2941227905 @default.
- W3016931901 cites W2943296006 @default.
- W3016931901 cites W2946193510 @default.
- W3016931901 cites W2950290344 @default.
- W3016931901 cites W2950752059 @default.
- W3016931901 cites W2953545691 @default.
- W3016931901 cites W2953611374 @default.
- W3016931901 cites W2963540401 @default.
- W3016931901 cites W2963629772 @default.
- W3016931901 cites W2963881987 @default.
- W3016931901 cites W2964029263 @default.
- W3016931901 cites W2964252706 @default.
- W3016931901 cites W2970606380 @default.
- W3016931901 cites W2970716886 @default.
- W3016931901 cites W2971544778 @default.
- W3016931901 cites W2975252415 @default.
- W3016931901 cites W2977797911 @default.
- W3016931901 cites W2981759742 @default.
- W3016931901 cites W2984259868 @default.
- W3016931901 cites W2988166621 @default.
- W3016931901 cites W2990239018 @default.
- W3016931901 cites W2996626025 @default.
- W3016931901 cites W2998628425 @default.
- W3016931901 cites W3000335297 @default.
- W3016931901 cites W3006470053 @default.
- W3016931901 cites W3006882429 @default.
- W3016931901 cites W3007607795 @default.
- W3016931901 cites W3010262580 @default.
- W3016931901 cites W3017123256 @default.
- W3016931901 cites W3023244064 @default.
- W3016931901 cites W3027472889 @default.
- W3016931901 cites W3047498003 @default.
- W3016931901 cites W3102407811 @default.
- W3016931901 cites W3102834148 @default.
- W3016931901 cites W3102859907 @default.
- W3016931901 doi "https://doi.org/10.48550/arxiv.2004.08856" @default.
- W3016931901 hasPublicationYear "2020" @default.
- W3016931901 type Work @default.
- W3016931901 sameAs 3016931901 @default.
- W3016931901 citedByCount "7" @default.
- W3016931901 countsByYear W30169319012019 @default.
- W3016931901 countsByYear W30169319012020 @default.
- W3016931901 countsByYear W30169319012021 @default.
- W3016931901 countsByYear W30169319012022 @default.
- W3016931901 crossrefType "posted-content" @default.
- W3016931901 hasAuthorship W3016931901A5019685555 @default.
- W3016931901 hasAuthorship W3016931901A5043839950 @default.
- W3016931901 hasAuthorship W3016931901A5052577882 @default.
- W3016931901 hasAuthorship W3016931901A5060038549 @default.
- W3016931901 hasAuthorship W3016931901A5071321132 @default.
- W3016931901 hasAuthorship W3016931901A5081977970 @default.
- W3016931901 hasAuthorship W3016931901A5087351635 @default.
- W3016931901 hasAuthorship W3016931901A5091266202 @default.
- W3016931901 hasBestOaLocation W30169319011 @default.
- W3016931901 hasConcept C110875604 @default.
- W3016931901 hasConcept C111919701 @default.
- W3016931901 hasConcept C120314980 @default.
- W3016931901 hasConcept C124101348 @default.
- W3016931901 hasConcept C136764020 @default.
- W3016931901 hasConcept C154945302 @default.
- W3016931901 hasConcept C23130292 @default.
- W3016931901 hasConcept C31258907 @default.
- W3016931901 hasConcept C41008148 @default.
- W3016931901 hasConcept C62230096 @default.
- W3016931901 hasConcept C79974875 @default.