Matches in SemOpenAlex for { <https://semopenalex.org/work/W3016948407> ?p ?o ?g. }
- W3016948407 endingPage "114570" @default.
- W3016948407 startingPage "114570" @default.
- W3016948407 abstract "Uncertainty assessment of parameters associated with non-point source pollution mechanism modeling are crucial for improving the effectiveness of pollution controlling. In this study, an approach based on Bayesian inference and integrated Markov chain Monte Carlo and multilevel factorial analysis has been developed, and it can not only apply straightforward Bayesian inference to assess parameter uncertainties, but also quantitatively investigate the main and interactive effects of multiple parameters on the model response variables by measuring the specific variations of model outputs. Its applicability and advantages are presented through the application of the Soil and Water Assessment Tool to Shitoukoumen Reservoir Catchment in northeast China. This study investigated the uncertainties of a set of sensitive parameters and their multilevel effects on model response variables, including average annual runoff (AAR), average annual sediment (AAS) and average annual total nitrogen (AAN). Results revealed that (i) soil conservation service runoff curve number for moisture condition II (CN2) had a positive effect on all response variables; (ii) available water capacity of the soil layer (SOL_AWC) had a negative effect on all response variables; (iii) the universal soil loss equation support practice (USLE_P) had a positive effect on AAS and AAN, and little effect on AAR; while the nitrate percolation coefficient (NPERCO) had a positive effect on AAN, and little effect on AAS and AAR; and (iv) the interactions amongst parameters had obvious interdependent effects on the model response variables, for example, the interaction between CN2 and SOL_AWC had a major impact on AAR. The above findings can improve the simulating and predicting capabilities of non-point source pollution mechanism model. Overall, this study highlights that the proposed approach represents a promising solution for uncertainty assessment of model parameters in non-point source pollution mechanism modeling." @default.
- W3016948407 created "2020-04-24" @default.
- W3016948407 creator A5004503144 @default.
- W3016948407 creator A5010262270 @default.
- W3016948407 creator A5040713015 @default.
- W3016948407 creator A5082692640 @default.
- W3016948407 date "2020-08-01" @default.
- W3016948407 modified "2023-10-10" @default.
- W3016948407 title "Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach" @default.
- W3016948407 cites W1513280753 @default.
- W3016948407 cites W1544278534 @default.
- W3016948407 cites W1586632742 @default.
- W3016948407 cites W1586733597 @default.
- W3016948407 cites W1627049501 @default.
- W3016948407 cites W1900845768 @default.
- W3016948407 cites W1943618647 @default.
- W3016948407 cites W1954692911 @default.
- W3016948407 cites W1956571648 @default.
- W3016948407 cites W1974452437 @default.
- W3016948407 cites W1975331722 @default.
- W3016948407 cites W1979555132 @default.
- W3016948407 cites W1979609378 @default.
- W3016948407 cites W1981301749 @default.
- W3016948407 cites W1982425121 @default.
- W3016948407 cites W1983963760 @default.
- W3016948407 cites W1993017383 @default.
- W3016948407 cites W1993294688 @default.
- W3016948407 cites W1995316073 @default.
- W3016948407 cites W2000710672 @default.
- W3016948407 cites W2004769702 @default.
- W3016948407 cites W2017255204 @default.
- W3016948407 cites W2024203030 @default.
- W3016948407 cites W2029361034 @default.
- W3016948407 cites W2033904036 @default.
- W3016948407 cites W2036056913 @default.
- W3016948407 cites W2037460094 @default.
- W3016948407 cites W2056306425 @default.
- W3016948407 cites W2066637819 @default.
- W3016948407 cites W2077888498 @default.
- W3016948407 cites W2088597487 @default.
- W3016948407 cites W2088729565 @default.
- W3016948407 cites W2104429862 @default.
- W3016948407 cites W2105216150 @default.
- W3016948407 cites W2117681582 @default.
- W3016948407 cites W2124738823 @default.
- W3016948407 cites W2128003492 @default.
- W3016948407 cites W2133837084 @default.
- W3016948407 cites W2136796925 @default.
- W3016948407 cites W2146283576 @default.
- W3016948407 cites W2146577723 @default.
- W3016948407 cites W2168388823 @default.
- W3016948407 cites W2169616177 @default.
- W3016948407 cites W2170401793 @default.
- W3016948407 cites W2171425849 @default.
- W3016948407 cites W2172114125 @default.
- W3016948407 cites W2210570692 @default.
- W3016948407 cites W2276243945 @default.
- W3016948407 cites W2343510481 @default.
- W3016948407 cites W2590362559 @default.
- W3016948407 cites W2619239515 @default.
- W3016948407 cites W2752079103 @default.
- W3016948407 cites W2900011544 @default.
- W3016948407 cites W2902108960 @default.
- W3016948407 cites W2946650296 @default.
- W3016948407 cites W2969777766 @default.
- W3016948407 cites W2982022751 @default.
- W3016948407 cites W3021886303 @default.
- W3016948407 cites W4253697006 @default.
- W3016948407 doi "https://doi.org/10.1016/j.envpol.2020.114570" @default.
- W3016948407 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33618467" @default.
- W3016948407 hasPublicationYear "2020" @default.
- W3016948407 type Work @default.
- W3016948407 sameAs 3016948407 @default.
- W3016948407 citedByCount "17" @default.
- W3016948407 countsByYear W30169484072020 @default.
- W3016948407 countsByYear W30169484072021 @default.
- W3016948407 countsByYear W30169484072022 @default.
- W3016948407 countsByYear W30169484072023 @default.
- W3016948407 crossrefType "journal-article" @default.
- W3016948407 hasAuthorship W3016948407A5004503144 @default.
- W3016948407 hasAuthorship W3016948407A5010262270 @default.
- W3016948407 hasAuthorship W3016948407A5040713015 @default.
- W3016948407 hasAuthorship W3016948407A5082692640 @default.
- W3016948407 hasConcept C105795698 @default.
- W3016948407 hasConcept C107673813 @default.
- W3016948407 hasConcept C111350023 @default.
- W3016948407 hasConcept C126645576 @default.
- W3016948407 hasConcept C160234255 @default.
- W3016948407 hasConcept C179006392 @default.
- W3016948407 hasConcept C18903297 @default.
- W3016948407 hasConcept C19499675 @default.
- W3016948407 hasConcept C205649164 @default.
- W3016948407 hasConcept C2780852570 @default.
- W3016948407 hasConcept C33923547 @default.
- W3016948407 hasConcept C39432304 @default.
- W3016948407 hasConcept C50477045 @default.
- W3016948407 hasConcept C53739315 @default.
- W3016948407 hasConcept C58640448 @default.