Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017015048> ?p ?o ?g. }
- W3017015048 endingPage "2072" @default.
- W3017015048 startingPage "2063" @default.
- W3017015048 abstract "With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis." @default.
- W3017015048 created "2020-04-24" @default.
- W3017015048 creator A5018152737 @default.
- W3017015048 creator A5022931905 @default.
- W3017015048 creator A5040605757 @default.
- W3017015048 creator A5050740079 @default.
- W3017015048 creator A5051182321 @default.
- W3017015048 creator A5064034236 @default.
- W3017015048 creator A5076244439 @default.
- W3017015048 creator A5084949021 @default.
- W3017015048 date "2020-01-01" @default.
- W3017015048 modified "2023-10-16" @default.
- W3017015048 title "To switch or not to switch – a machine learning approach for ferroelectricity" @default.
- W3017015048 cites W2015159529 @default.
- W3017015048 cites W2033814017 @default.
- W3017015048 cites W2043500368 @default.
- W3017015048 cites W2044073130 @default.
- W3017015048 cites W2045406722 @default.
- W3017015048 cites W2051184600 @default.
- W3017015048 cites W2068399321 @default.
- W3017015048 cites W2072458791 @default.
- W3017015048 cites W2085840193 @default.
- W3017015048 cites W2092187120 @default.
- W3017015048 cites W2093578293 @default.
- W3017015048 cites W2095042424 @default.
- W3017015048 cites W2096864144 @default.
- W3017015048 cites W2102636083 @default.
- W3017015048 cites W2104271795 @default.
- W3017015048 cites W2110553453 @default.
- W3017015048 cites W2111891853 @default.
- W3017015048 cites W2124851915 @default.
- W3017015048 cites W2179174202 @default.
- W3017015048 cites W2201565907 @default.
- W3017015048 cites W2221301967 @default.
- W3017015048 cites W2324068916 @default.
- W3017015048 cites W2340944931 @default.
- W3017015048 cites W2418058283 @default.
- W3017015048 cites W2487770199 @default.
- W3017015048 cites W2530672064 @default.
- W3017015048 cites W2531363307 @default.
- W3017015048 cites W2588941729 @default.
- W3017015048 cites W2611130891 @default.
- W3017015048 cites W2611220479 @default.
- W3017015048 cites W2768804028 @default.
- W3017015048 cites W2794653131 @default.
- W3017015048 cites W2806941808 @default.
- W3017015048 cites W2807830619 @default.
- W3017015048 cites W2807967487 @default.
- W3017015048 cites W2810491924 @default.
- W3017015048 cites W2887860067 @default.
- W3017015048 cites W2900704646 @default.
- W3017015048 cites W2916096286 @default.
- W3017015048 cites W2965784208 @default.
- W3017015048 cites W2967270708 @default.
- W3017015048 cites W3103145119 @default.
- W3017015048 doi "https://doi.org/10.1039/c9na00731h" @default.
- W3017015048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36132496" @default.
- W3017015048 hasPublicationYear "2020" @default.
- W3017015048 type Work @default.
- W3017015048 sameAs 3017015048 @default.
- W3017015048 citedByCount "11" @default.
- W3017015048 countsByYear W30170150482020 @default.
- W3017015048 countsByYear W30170150482021 @default.
- W3017015048 countsByYear W30170150482022 @default.
- W3017015048 countsByYear W30170150482023 @default.
- W3017015048 crossrefType "journal-article" @default.
- W3017015048 hasAuthorship W3017015048A5018152737 @default.
- W3017015048 hasAuthorship W3017015048A5022931905 @default.
- W3017015048 hasAuthorship W3017015048A5040605757 @default.
- W3017015048 hasAuthorship W3017015048A5050740079 @default.
- W3017015048 hasAuthorship W3017015048A5051182321 @default.
- W3017015048 hasAuthorship W3017015048A5064034236 @default.
- W3017015048 hasAuthorship W3017015048A5076244439 @default.
- W3017015048 hasAuthorship W3017015048A5084949021 @default.
- W3017015048 hasBestOaLocation W30170150481 @default.
- W3017015048 hasConcept C11413529 @default.
- W3017015048 hasConcept C119857082 @default.
- W3017015048 hasConcept C121332964 @default.
- W3017015048 hasConcept C123299182 @default.
- W3017015048 hasConcept C127413603 @default.
- W3017015048 hasConcept C133386390 @default.
- W3017015048 hasConcept C133731056 @default.
- W3017015048 hasConcept C147789679 @default.
- W3017015048 hasConcept C154945302 @default.
- W3017015048 hasConcept C185592680 @default.
- W3017015048 hasConcept C192562407 @default.
- W3017015048 hasConcept C205049153 @default.
- W3017015048 hasConcept C205606062 @default.
- W3017015048 hasConcept C26873012 @default.
- W3017015048 hasConcept C41008148 @default.
- W3017015048 hasConcept C49040817 @default.
- W3017015048 hasConcept C50644808 @default.
- W3017015048 hasConcept C60908668 @default.
- W3017015048 hasConcept C73555534 @default.
- W3017015048 hasConcept C79090758 @default.
- W3017015048 hasConceptScore W3017015048C11413529 @default.
- W3017015048 hasConceptScore W3017015048C119857082 @default.
- W3017015048 hasConceptScore W3017015048C121332964 @default.