Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017046942> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3017046942 abstract "Several classification methods assume that the underlying distributions follow tree-structured graphical models. Indeed, trees capture statistical dependencies between pairs of variables, which may be crucial to attain low classification errors. The resulting classifier is linear in the log-transformed univariate and bivariate densities that correspond to the tree edges. In practice, however, observed data may not be well approximated by trees. Yet, motivated by the importance of pairwise dependencies for accurate classification, here we propose to approximate the optimal decision boundary by a sparse linear combination of the univariate and bivariate log-transformed densities. Our proposed approach is semi-parametric in nature: we non-parametrically estimate the univariate and bivariate densities, remove pairs of variables that are nearly independent using the Hilbert-Schmidt independence criteria, and finally construct a linear SVM on the retained log-transformed densities. We demonstrate using both synthetic and real data that our resulting classifier, denoted SLB (Sparse Log-Bivariate density), is competitive with popular classification methods." @default.
- W3017046942 created "2020-04-24" @default.
- W3017046942 creator A5034942163 @default.
- W3017046942 creator A5055421576 @default.
- W3017046942 creator A5056312728 @default.
- W3017046942 creator A5084681826 @default.
- W3017046942 creator A5090351866 @default.
- W3017046942 date "2018-06-06" @default.
- W3017046942 modified "2023-09-27" @default.
- W3017046942 title "Beyond Trees: Classification with Sparse Pairwise Dependencies" @default.
- W3017046942 cites W1483058143 @default.
- W3017046942 cites W1507634612 @default.
- W3017046942 cites W1511694993 @default.
- W3017046942 cites W1511986666 @default.
- W3017046942 cites W1625504505 @default.
- W3017046942 cites W1638081485 @default.
- W3017046942 cites W1817561967 @default.
- W3017046942 cites W1968934255 @default.
- W3017046942 cites W2023933519 @default.
- W3017046942 cites W2028912451 @default.
- W3017046942 cites W2030738386 @default.
- W3017046942 cites W2103755321 @default.
- W3017046942 cites W2107968098 @default.
- W3017046942 cites W2116402545 @default.
- W3017046942 cites W2117245428 @default.
- W3017046942 cites W2118148215 @default.
- W3017046942 cites W2130698119 @default.
- W3017046942 cites W2137587467 @default.
- W3017046942 cites W2145544165 @default.
- W3017046942 cites W2159245256 @default.
- W3017046942 cites W2163166770 @default.
- W3017046942 cites W2187660657 @default.
- W3017046942 cites W2210716609 @default.
- W3017046942 cites W2741081039 @default.
- W3017046942 cites W2885291112 @default.
- W3017046942 cites W3099652024 @default.
- W3017046942 cites W40442397 @default.
- W3017046942 cites W607505555 @default.
- W3017046942 hasPublicationYear "2018" @default.
- W3017046942 type Work @default.
- W3017046942 sameAs 3017046942 @default.
- W3017046942 citedByCount "0" @default.
- W3017046942 crossrefType "posted-content" @default.
- W3017046942 hasAuthorship W3017046942A5034942163 @default.
- W3017046942 hasAuthorship W3017046942A5055421576 @default.
- W3017046942 hasAuthorship W3017046942A5056312728 @default.
- W3017046942 hasAuthorship W3017046942A5084681826 @default.
- W3017046942 hasAuthorship W3017046942A5090351866 @default.
- W3017046942 hasConcept C105795698 @default.
- W3017046942 hasConcept C12267149 @default.
- W3017046942 hasConcept C153180895 @default.
- W3017046942 hasConcept C154945302 @default.
- W3017046942 hasConcept C161584116 @default.
- W3017046942 hasConcept C184898388 @default.
- W3017046942 hasConcept C199163554 @default.
- W3017046942 hasConcept C33923547 @default.
- W3017046942 hasConcept C41008148 @default.
- W3017046942 hasConcept C64341305 @default.
- W3017046942 hasConcept C84525736 @default.
- W3017046942 hasConcept C95623464 @default.
- W3017046942 hasConceptScore W3017046942C105795698 @default.
- W3017046942 hasConceptScore W3017046942C12267149 @default.
- W3017046942 hasConceptScore W3017046942C153180895 @default.
- W3017046942 hasConceptScore W3017046942C154945302 @default.
- W3017046942 hasConceptScore W3017046942C161584116 @default.
- W3017046942 hasConceptScore W3017046942C184898388 @default.
- W3017046942 hasConceptScore W3017046942C199163554 @default.
- W3017046942 hasConceptScore W3017046942C33923547 @default.
- W3017046942 hasConceptScore W3017046942C41008148 @default.
- W3017046942 hasConceptScore W3017046942C64341305 @default.
- W3017046942 hasConceptScore W3017046942C84525736 @default.
- W3017046942 hasConceptScore W3017046942C95623464 @default.
- W3017046942 hasLocation W30170469421 @default.
- W3017046942 hasOpenAccess W3017046942 @default.
- W3017046942 hasPrimaryLocation W30170469421 @default.
- W3017046942 hasRelatedWork W1586534846 @default.
- W3017046942 hasRelatedWork W1607050922 @default.
- W3017046942 hasRelatedWork W178809062 @default.
- W3017046942 hasRelatedWork W190208287 @default.
- W3017046942 hasRelatedWork W1982525872 @default.
- W3017046942 hasRelatedWork W2016603580 @default.
- W3017046942 hasRelatedWork W2040924670 @default.
- W3017046942 hasRelatedWork W2168447548 @default.
- W3017046942 hasRelatedWork W2279558785 @default.
- W3017046942 hasRelatedWork W2516108306 @default.
- W3017046942 hasRelatedWork W2552403831 @default.
- W3017046942 hasRelatedWork W2587892401 @default.
- W3017046942 hasRelatedWork W2603922505 @default.
- W3017046942 hasRelatedWork W2754441230 @default.
- W3017046942 hasRelatedWork W2926153952 @default.
- W3017046942 hasRelatedWork W2938698572 @default.
- W3017046942 hasRelatedWork W2979692949 @default.
- W3017046942 hasRelatedWork W3003451901 @default.
- W3017046942 hasRelatedWork W3096646790 @default.
- W3017046942 hasRelatedWork W2740657934 @default.
- W3017046942 isParatext "false" @default.
- W3017046942 isRetracted "false" @default.
- W3017046942 magId "3017046942" @default.
- W3017046942 workType "article" @default.