Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017061705> ?p ?o ?g. }
- W3017061705 endingPage "124976" @default.
- W3017061705 startingPage "124976" @default.
- W3017061705 abstract "In this study, a Bayesian-neural-network-based factorial analysis (abbreviated as BNN-FA) method is developed for quantifying the effects of multiple factors on inflow from the Syr Darya to the Aral Sea (abbreviated as ISA). BNN-FA cannot only reflect the complex relationship between inputs and outputs, but also reveal the individual and interactive effects of multiple factors. BNN-FA is applied to the downstream of the Syr Darya river basin, where effects of human-activity, hydrological, and ecological factors are analyzed. Results reveal that (i) during 1960–1991, the main factors affecting ISA are: agricultural water consumption of Uzbekistan (31.2%) > agricultural water consumption of Kazakhstan (23.8%) > agricultural water consumption of Tajikistan (14.3%) > reservoir water storage (10.6%) > evapotranspiration (7.5%); interactions among agricultural water consumptions of the three countries (i.e. Kazakhstan, Uzbekistan, and Tajikistan) and interactions between evapotranspiration and agricultural water consumptions have noticeable effects on ISA; (ii) during 1992–2015, the main factors are: agricultural water consumption of Uzbekistan (21.4%) > upstream inflow (19.0%) > agricultural water consumption of Kazakhstan (16.0%) > agricultural water consumption of Tajikistan (14.2%) > industrial water consumption of Uzbekistan (9.4%); interactions among agricultural water consumptions of the three countries and interactions between upstream inflow and agricultural water consumptions have important effects on ISA; (iii) the contribution of agricultural activity decreases from 69.3% in 1960–1991 to 51.6% in 1992–2015. The findings are helpful for decision makers to formulate effective strategies to increase the runoff of the Syr Darya and restore the eco-environment of the Aral Sea." @default.
- W3017061705 created "2020-04-24" @default.
- W3017061705 creator A5000832305 @default.
- W3017061705 creator A5014716343 @default.
- W3017061705 creator A5038000377 @default.
- W3017061705 date "2020-08-01" @default.
- W3017061705 modified "2023-10-10" @default.
- W3017061705 title "Analyzing variation of inflow from the Syr Darya to the Aral Sea: A Bayesian-neural-network-based factorial analysis method" @default.
- W3017061705 cites W1627096583 @default.
- W3017061705 cites W165684514 @default.
- W3017061705 cites W1674120228 @default.
- W3017061705 cites W1881575018 @default.
- W3017061705 cites W1946796168 @default.
- W3017061705 cites W1964665495 @default.
- W3017061705 cites W1980429684 @default.
- W3017061705 cites W1984176835 @default.
- W3017061705 cites W2015630970 @default.
- W3017061705 cites W2020962513 @default.
- W3017061705 cites W2023175173 @default.
- W3017061705 cites W2028013207 @default.
- W3017061705 cites W2034237773 @default.
- W3017061705 cites W2040234324 @default.
- W3017061705 cites W2053615983 @default.
- W3017061705 cites W2060200981 @default.
- W3017061705 cites W2065385043 @default.
- W3017061705 cites W2072588209 @default.
- W3017061705 cites W2076769467 @default.
- W3017061705 cites W2147354624 @default.
- W3017061705 cites W2164711206 @default.
- W3017061705 cites W2172114125 @default.
- W3017061705 cites W2198308408 @default.
- W3017061705 cites W2210396633 @default.
- W3017061705 cites W2261059368 @default.
- W3017061705 cites W2268519311 @default.
- W3017061705 cites W2293858283 @default.
- W3017061705 cites W2298765618 @default.
- W3017061705 cites W2301360846 @default.
- W3017061705 cites W2343510481 @default.
- W3017061705 cites W2345816942 @default.
- W3017061705 cites W2441507532 @default.
- W3017061705 cites W2612696227 @default.
- W3017061705 cites W2622931222 @default.
- W3017061705 cites W2623181128 @default.
- W3017061705 cites W2752079103 @default.
- W3017061705 cites W2755150261 @default.
- W3017061705 cites W2774505206 @default.
- W3017061705 cites W2783931264 @default.
- W3017061705 cites W2794020149 @default.
- W3017061705 cites W2804560900 @default.
- W3017061705 cites W2805635560 @default.
- W3017061705 cites W2806129420 @default.
- W3017061705 cites W2809163659 @default.
- W3017061705 cites W2886212698 @default.
- W3017061705 cites W2890248380 @default.
- W3017061705 cites W2898214691 @default.
- W3017061705 cites W2904704617 @default.
- W3017061705 cites W2905759074 @default.
- W3017061705 cites W2912182830 @default.
- W3017061705 cites W2914941211 @default.
- W3017061705 cites W2921220947 @default.
- W3017061705 cites W2922165060 @default.
- W3017061705 cites W2946707718 @default.
- W3017061705 cites W2973960501 @default.
- W3017061705 cites W2980748561 @default.
- W3017061705 cites W2991891763 @default.
- W3017061705 cites W2996235771 @default.
- W3017061705 doi "https://doi.org/10.1016/j.jhydrol.2020.124976" @default.
- W3017061705 hasPublicationYear "2020" @default.
- W3017061705 type Work @default.
- W3017061705 sameAs 3017061705 @default.
- W3017061705 citedByCount "16" @default.
- W3017061705 countsByYear W30170617052021 @default.
- W3017061705 countsByYear W30170617052022 @default.
- W3017061705 countsByYear W30170617052023 @default.
- W3017061705 crossrefType "journal-article" @default.
- W3017061705 hasAuthorship W3017061705A5000832305 @default.
- W3017061705 hasAuthorship W3017061705A5014716343 @default.
- W3017061705 hasAuthorship W3017061705A5038000377 @default.
- W3017061705 hasConcept C109007969 @default.
- W3017061705 hasConcept C118518473 @default.
- W3017061705 hasConcept C127313418 @default.
- W3017061705 hasConcept C151730666 @default.
- W3017061705 hasConcept C153294291 @default.
- W3017061705 hasConcept C166957645 @default.
- W3017061705 hasConcept C176783924 @default.
- W3017061705 hasConcept C187320778 @default.
- W3017061705 hasConcept C18903297 @default.
- W3017061705 hasConcept C205649164 @default.
- W3017061705 hasConcept C2776132308 @default.
- W3017061705 hasConcept C39432304 @default.
- W3017061705 hasConcept C50477045 @default.
- W3017061705 hasConcept C524765639 @default.
- W3017061705 hasConcept C76886044 @default.
- W3017061705 hasConcept C86803240 @default.
- W3017061705 hasConceptScore W3017061705C109007969 @default.
- W3017061705 hasConceptScore W3017061705C118518473 @default.
- W3017061705 hasConceptScore W3017061705C127313418 @default.
- W3017061705 hasConceptScore W3017061705C151730666 @default.