Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017140157> ?p ?o ?g. }
- W3017140157 endingPage "1153" @default.
- W3017140157 startingPage "1153" @default.
- W3017140157 abstract "The application of statistical and Machine Learning models plays a critical role in planning and decision support processes for efficient and reliable Water Distribution Network (WDN) management. Failure models can provide valuable information for prioritizing system rehabilitation even in data scarcity scenarios, such as developing countries. Few studies have analyzed the performance of more than two models, and examples of case studies in developing countries are insufficient. This study compares various statistical and Machine Learning models to provide useful information to practitioners for the selection of a suitable pipe failure model according to information availability and network characteristics. Three statistical models (i.e., Linear, Poisson, and Evolutionary Polynomial Regressions) were used for failure prediction in groups of pipes. Machine Learning approaches, particularly Gradient-Boosted Tree (GBT), Bayes, Support Vector Machines and Artificial Neuronal Networks (ANNs), were compared in predicting individual pipe failure rates. The proposed approach was applied to a WDN in Bogotá (Colombia). The statistical models showed an acceptable performance (R2 between 0.695 and 0.927), but the Poisson Regression was the most suitable for predicting failures in pipes with lower failure rates. Regarding Machine Learning models, Bayes and ANNs exhibited low performance in the prediction of pipe failure condition. The GBT approach had the best performing classifier." @default.
- W3017140157 created "2020-04-24" @default.
- W3017140157 creator A5039177718 @default.
- W3017140157 creator A5046853961 @default.
- W3017140157 date "2020-04-17" @default.
- W3017140157 modified "2023-10-17" @default.
- W3017140157 title "Comparison of Statistical and Machine Learning Models for Pipe Failure Modeling in Water Distribution Networks" @default.
- W3017140157 cites W1509736017 @default.
- W3017140157 cites W1964162198 @default.
- W3017140157 cites W1969780039 @default.
- W3017140157 cites W1973380970 @default.
- W3017140157 cites W1977130378 @default.
- W3017140157 cites W1981384948 @default.
- W3017140157 cites W1991901901 @default.
- W3017140157 cites W1995017913 @default.
- W3017140157 cites W1998890126 @default.
- W3017140157 cites W2004751953 @default.
- W3017140157 cites W2008903504 @default.
- W3017140157 cites W2017960224 @default.
- W3017140157 cites W2018226609 @default.
- W3017140157 cites W2018914382 @default.
- W3017140157 cites W2024046085 @default.
- W3017140157 cites W2026758235 @default.
- W3017140157 cites W2028850413 @default.
- W3017140157 cites W2029303070 @default.
- W3017140157 cites W2042687444 @default.
- W3017140157 cites W2048414251 @default.
- W3017140157 cites W2051224630 @default.
- W3017140157 cites W2063442045 @default.
- W3017140157 cites W2063879348 @default.
- W3017140157 cites W2065493865 @default.
- W3017140157 cites W2072953516 @default.
- W3017140157 cites W2075141909 @default.
- W3017140157 cites W2085181402 @default.
- W3017140157 cites W2108706807 @default.
- W3017140157 cites W2120888696 @default.
- W3017140157 cites W2124838890 @default.
- W3017140157 cites W2127048411 @default.
- W3017140157 cites W2153874870 @default.
- W3017140157 cites W2240015487 @default.
- W3017140157 cites W2247602019 @default.
- W3017140157 cites W2302626862 @default.
- W3017140157 cites W2334290708 @default.
- W3017140157 cites W2553722054 @default.
- W3017140157 cites W2586931340 @default.
- W3017140157 cites W2733680241 @default.
- W3017140157 cites W2765179476 @default.
- W3017140157 cites W2770641296 @default.
- W3017140157 cites W2790863358 @default.
- W3017140157 cites W2800688560 @default.
- W3017140157 cites W2889864630 @default.
- W3017140157 cites W2894834475 @default.
- W3017140157 cites W2916591582 @default.
- W3017140157 cites W2944854809 @default.
- W3017140157 cites W2965502148 @default.
- W3017140157 cites W2987225788 @default.
- W3017140157 cites W2996057439 @default.
- W3017140157 cites W3001291798 @default.
- W3017140157 cites W4231712686 @default.
- W3017140157 cites W4243417134 @default.
- W3017140157 cites W769703914 @default.
- W3017140157 doi "https://doi.org/10.3390/w12041153" @default.
- W3017140157 hasPublicationYear "2020" @default.
- W3017140157 type Work @default.
- W3017140157 sameAs 3017140157 @default.
- W3017140157 citedByCount "35" @default.
- W3017140157 countsByYear W30171401572020 @default.
- W3017140157 countsByYear W30171401572021 @default.
- W3017140157 countsByYear W30171401572022 @default.
- W3017140157 countsByYear W30171401572023 @default.
- W3017140157 crossrefType "journal-article" @default.
- W3017140157 hasAuthorship W3017140157A5039177718 @default.
- W3017140157 hasAuthorship W3017140157A5046853961 @default.
- W3017140157 hasBestOaLocation W30171401571 @default.
- W3017140157 hasConcept C107673813 @default.
- W3017140157 hasConcept C114289077 @default.
- W3017140157 hasConcept C119857082 @default.
- W3017140157 hasConcept C12267149 @default.
- W3017140157 hasConcept C124101348 @default.
- W3017140157 hasConcept C154945302 @default.
- W3017140157 hasConcept C207201462 @default.
- W3017140157 hasConcept C2779915298 @default.
- W3017140157 hasConcept C41008148 @default.
- W3017140157 hasConcept C50644808 @default.
- W3017140157 hasConcept C52001869 @default.
- W3017140157 hasConcept C84525736 @default.
- W3017140157 hasConcept C93959086 @default.
- W3017140157 hasConceptScore W3017140157C107673813 @default.
- W3017140157 hasConceptScore W3017140157C114289077 @default.
- W3017140157 hasConceptScore W3017140157C119857082 @default.
- W3017140157 hasConceptScore W3017140157C12267149 @default.
- W3017140157 hasConceptScore W3017140157C124101348 @default.
- W3017140157 hasConceptScore W3017140157C154945302 @default.
- W3017140157 hasConceptScore W3017140157C207201462 @default.
- W3017140157 hasConceptScore W3017140157C2779915298 @default.
- W3017140157 hasConceptScore W3017140157C41008148 @default.
- W3017140157 hasConceptScore W3017140157C50644808 @default.
- W3017140157 hasConceptScore W3017140157C52001869 @default.