Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017162658> ?p ?o ?g. }
- W3017162658 endingPage "1860" @default.
- W3017162658 startingPage "1840" @default.
- W3017162658 abstract "Human error has been highlighted as main cause of industrial and nuclear accidents. One of the key issues related to human error is a worker’s fitness for duty (FFD). FFD refers to the mental and physical ability of employees to safely perform their job. The objective of this study is to investigate the feasibility of identifying a worker’s FFD status using biosignals. The FFD statuses examined were with respect to alcohol use, depression, stress, anxiety, and sleep deprivation. Biosignals examined in the study include electrical activity in the brain measured by electroencephalogram and referred to as EEG, electrical activity of the heartbeat measured by electrocardiogram and referred to as ECG, galvanic skin response (GSR), blood volume pulse (BVP), dynamic changes in blood pressure and referred to as BPHEG, and respiration. A total of 114 volunteers participated in the study as experimental subjects from whom biodata were collected during their resting states (eyes closed and eyes open). The steps followed in the study include signal preprocessing, power spectrum feature analysis, important feature selection, and support vector machine (SVM) classification using 5-fold cross validation to identify a worker’s FFD status. Among the 70 biosignal indicators, important features were selected by Multivariate Analysis of Variance (MANOVA). The best model developed with the SVM used 64 biosignal indicators and showed a binary (fit or unfit) classification accuracy of 99.4% and a multi-classification accuracy of 97.7%. While limitations of the current work remain, the study indicates the possibility of implementing an effective FFD management program to reduce human error in plant operations.A thumbnail sketch of the study is as follows:1. To reduce human error in nuclear operations, use of biosignals was investigated to identify FFD status of workers.2. EEG, ECG, GSR, BVP, BPHEG, and respiration signals were used to identify a worker’s FFD status.3. The SVM-based model was successfully implemented for multi-class and binary-class FFD classification." @default.
- W3017162658 created "2020-04-24" @default.
- W3017162658 creator A5007711657 @default.
- W3017162658 creator A5081232386 @default.
- W3017162658 date "2020-04-14" @default.
- W3017162658 modified "2023-10-14" @default.
- W3017162658 title "A Worker’s Fitness-for-Duty Status Identification Based on Biosignals to Reduce Human Error in Nuclear Power Plants" @default.
- W3017162658 cites W1575201818 @default.
- W3017162658 cites W159391136 @default.
- W3017162658 cites W1914169444 @default.
- W3017162658 cites W1964029730 @default.
- W3017162658 cites W1968003855 @default.
- W3017162658 cites W1972131791 @default.
- W3017162658 cites W1972845148 @default.
- W3017162658 cites W1977225169 @default.
- W3017162658 cites W1980594883 @default.
- W3017162658 cites W1981020864 @default.
- W3017162658 cites W1992889332 @default.
- W3017162658 cites W1996299251 @default.
- W3017162658 cites W2005549850 @default.
- W3017162658 cites W2007215820 @default.
- W3017162658 cites W2011420898 @default.
- W3017162658 cites W2012433634 @default.
- W3017162658 cites W2022088231 @default.
- W3017162658 cites W2023805688 @default.
- W3017162658 cites W2025197360 @default.
- W3017162658 cites W2029882491 @default.
- W3017162658 cites W2031590924 @default.
- W3017162658 cites W2040926452 @default.
- W3017162658 cites W2042324951 @default.
- W3017162658 cites W2046678413 @default.
- W3017162658 cites W2050559027 @default.
- W3017162658 cites W2055968423 @default.
- W3017162658 cites W2056565869 @default.
- W3017162658 cites W2057540292 @default.
- W3017162658 cites W2060449862 @default.
- W3017162658 cites W2066456584 @default.
- W3017162658 cites W2068503723 @default.
- W3017162658 cites W2074922360 @default.
- W3017162658 cites W2075286453 @default.
- W3017162658 cites W2078510212 @default.
- W3017162658 cites W2085149140 @default.
- W3017162658 cites W2087108004 @default.
- W3017162658 cites W2087141537 @default.
- W3017162658 cites W2087491399 @default.
- W3017162658 cites W2087666960 @default.
- W3017162658 cites W2088224022 @default.
- W3017162658 cites W2093103229 @default.
- W3017162658 cites W2095310269 @default.
- W3017162658 cites W2097437818 @default.
- W3017162658 cites W2108593116 @default.
- W3017162658 cites W2108946275 @default.
- W3017162658 cites W2111743880 @default.
- W3017162658 cites W2114965225 @default.
- W3017162658 cites W2131274108 @default.
- W3017162658 cites W2146010402 @default.
- W3017162658 cites W2149169715 @default.
- W3017162658 cites W2151355117 @default.
- W3017162658 cites W2158197903 @default.
- W3017162658 cites W2158698691 @default.
- W3017162658 cites W2169265511 @default.
- W3017162658 cites W2238097489 @default.
- W3017162658 cites W2293040502 @default.
- W3017162658 cites W2417143007 @default.
- W3017162658 cites W2488701045 @default.
- W3017162658 cites W2777631867 @default.
- W3017162658 cites W2901651419 @default.
- W3017162658 cites W4210651582 @default.
- W3017162658 cites W4233518571 @default.
- W3017162658 cites W4245920268 @default.
- W3017162658 cites W4251944598 @default.
- W3017162658 cites W4252485008 @default.
- W3017162658 cites W4297900197 @default.
- W3017162658 cites W2080573505 @default.
- W3017162658 doi "https://doi.org/10.1080/00295450.2020.1731405" @default.
- W3017162658 hasPublicationYear "2020" @default.
- W3017162658 type Work @default.
- W3017162658 sameAs 3017162658 @default.
- W3017162658 citedByCount "5" @default.
- W3017162658 countsByYear W30171626582022 @default.
- W3017162658 countsByYear W30171626582023 @default.
- W3017162658 crossrefType "journal-article" @default.
- W3017162658 hasAuthorship W3017162658A5007711657 @default.
- W3017162658 hasAuthorship W3017162658A5081232386 @default.
- W3017162658 hasConcept C118552586 @default.
- W3017162658 hasConcept C12267149 @default.
- W3017162658 hasConcept C148483581 @default.
- W3017162658 hasConcept C153180895 @default.
- W3017162658 hasConcept C154945302 @default.
- W3017162658 hasConcept C15744967 @default.
- W3017162658 hasConcept C2779055241 @default.
- W3017162658 hasConcept C41008148 @default.
- W3017162658 hasConcept C522805319 @default.
- W3017162658 hasConcept C555944384 @default.
- W3017162658 hasConcept C558461103 @default.
- W3017162658 hasConcept C76155785 @default.
- W3017162658 hasConceptScore W3017162658C118552586 @default.
- W3017162658 hasConceptScore W3017162658C12267149 @default.