Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017186475> ?p ?o ?g. }
- W3017186475 endingPage "2632" @default.
- W3017186475 startingPage "2622" @default.
- W3017186475 abstract "Accurate, reliable, and robust prognosis of the state of health (SOH) and remaining useful life (RUL) plays a significant role in battery pack management for electric vehicles. However, there still exist challenges in computational cost, storage requirement, health indicators extraction, and algorithm design. This paper proposes a novel dual Gaussian process regression model for the SOH and RUL prognosis of battery packs. The multi-stage constant current charging method is used for aging tests. Health indicators are extracted from partial charging curves, in which capacity loss, resistance increase, and inconsistency variation are examined. A dual Gaussian process regression model is designed to predict SOH over the entire cycle life and RUL near the end of life. Experimental results show that the predictions of SOH and RUL are accurate, reliable, and robust. The maximum absolute errors and root mean square errors of SOH predictions are less than 1.3% and 0.5%, respectively, and the maximum absolute errors and root mean square errors of RUL predictions are 2 cycles and 1 cycle, respectively. The computation time for the entire training and testing process is less than 5 seconds. This article shows the prospect of health prognosis using multiple health indicators in automotive applications." @default.
- W3017186475 created "2020-04-24" @default.
- W3017186475 creator A5028738691 @default.
- W3017186475 creator A5046196792 @default.
- W3017186475 creator A5077446544 @default.
- W3017186475 date "2020-12-01" @default.
- W3017186475 modified "2023-10-16" @default.
- W3017186475 title "Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach" @default.
- W3017186475 cites W2008426812 @default.
- W3017186475 cites W2044043537 @default.
- W3017186475 cites W2054808003 @default.
- W3017186475 cites W2056433204 @default.
- W3017186475 cites W2060624994 @default.
- W3017186475 cites W2063559185 @default.
- W3017186475 cites W2079985616 @default.
- W3017186475 cites W2085942406 @default.
- W3017186475 cites W2087828092 @default.
- W3017186475 cites W2090006023 @default.
- W3017186475 cites W2091133754 @default.
- W3017186475 cites W2125914170 @default.
- W3017186475 cites W2144352195 @default.
- W3017186475 cites W2224472339 @default.
- W3017186475 cites W2272128138 @default.
- W3017186475 cites W2297621952 @default.
- W3017186475 cites W2316728050 @default.
- W3017186475 cites W2342265232 @default.
- W3017186475 cites W2495099137 @default.
- W3017186475 cites W2500303754 @default.
- W3017186475 cites W2509364735 @default.
- W3017186475 cites W2584089850 @default.
- W3017186475 cites W2612210564 @default.
- W3017186475 cites W2613345854 @default.
- W3017186475 cites W2621676962 @default.
- W3017186475 cites W2623427496 @default.
- W3017186475 cites W2740882199 @default.
- W3017186475 cites W2762736364 @default.
- W3017186475 cites W2767663538 @default.
- W3017186475 cites W2767681895 @default.
- W3017186475 cites W2772728162 @default.
- W3017186475 cites W2788174686 @default.
- W3017186475 cites W2789335524 @default.
- W3017186475 cites W2791632718 @default.
- W3017186475 cites W2793702125 @default.
- W3017186475 cites W2800824033 @default.
- W3017186475 cites W2887597614 @default.
- W3017186475 cites W2887979441 @default.
- W3017186475 cites W2890169947 @default.
- W3017186475 cites W2902107055 @default.
- W3017186475 cites W2910719185 @default.
- W3017186475 cites W2921358399 @default.
- W3017186475 cites W2924382816 @default.
- W3017186475 cites W2957056027 @default.
- W3017186475 cites W2965809956 @default.
- W3017186475 cites W2968677983 @default.
- W3017186475 cites W2985344503 @default.
- W3017186475 cites W3005296994 @default.
- W3017186475 cites W4236706032 @default.
- W3017186475 doi "https://doi.org/10.1109/tmech.2020.2986364" @default.
- W3017186475 hasPublicationYear "2020" @default.
- W3017186475 type Work @default.
- W3017186475 sameAs 3017186475 @default.
- W3017186475 citedByCount "94" @default.
- W3017186475 countsByYear W30171864752021 @default.
- W3017186475 countsByYear W30171864752022 @default.
- W3017186475 countsByYear W30171864752023 @default.
- W3017186475 crossrefType "journal-article" @default.
- W3017186475 hasAuthorship W3017186475A5028738691 @default.
- W3017186475 hasAuthorship W3017186475A5046196792 @default.
- W3017186475 hasAuthorship W3017186475A5077446544 @default.
- W3017186475 hasConcept C105795698 @default.
- W3017186475 hasConcept C11413529 @default.
- W3017186475 hasConcept C119599485 @default.
- W3017186475 hasConcept C121332964 @default.
- W3017186475 hasConcept C127413603 @default.
- W3017186475 hasConcept C139945424 @default.
- W3017186475 hasConcept C163258240 @default.
- W3017186475 hasConcept C171146098 @default.
- W3017186475 hasConcept C200601418 @default.
- W3017186475 hasConcept C2776422217 @default.
- W3017186475 hasConcept C2777294910 @default.
- W3017186475 hasConcept C2778508592 @default.
- W3017186475 hasConcept C33923547 @default.
- W3017186475 hasConcept C41008148 @default.
- W3017186475 hasConcept C45374587 @default.
- W3017186475 hasConcept C555008776 @default.
- W3017186475 hasConcept C62520636 @default.
- W3017186475 hasConcept C71907059 @default.
- W3017186475 hasConcept C84945661 @default.
- W3017186475 hasConceptScore W3017186475C105795698 @default.
- W3017186475 hasConceptScore W3017186475C11413529 @default.
- W3017186475 hasConceptScore W3017186475C119599485 @default.
- W3017186475 hasConceptScore W3017186475C121332964 @default.
- W3017186475 hasConceptScore W3017186475C127413603 @default.
- W3017186475 hasConceptScore W3017186475C139945424 @default.
- W3017186475 hasConceptScore W3017186475C163258240 @default.
- W3017186475 hasConceptScore W3017186475C171146098 @default.
- W3017186475 hasConceptScore W3017186475C200601418 @default.
- W3017186475 hasConceptScore W3017186475C2776422217 @default.