Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017207875> ?p ?o ?g. }
- W3017207875 endingPage "105893" @default.
- W3017207875 startingPage "105893" @default.
- W3017207875 abstract "Abstract Critical nodes of complex networks play a crucial role in effective information spreading. There are many methods have been proposed to identify critical nodes in complex networks, ranging from centralities of nodes to diffusion-based processes. Most of them try to find what kind of structure will make the node more influential. In this paper, inspired by the concept of graph convolutional networks(GCNs), we convert the critical node identification problem in complex networks into a regression problem. Considering adjacency matrices of networks and convolutional neural networks(CNNs), a simply yet effectively method named R C N N is presented to identify critical nodes with the best spreading ability. In this approach, we can generate feature matrix for each node and use a convolutional neural network to train and predict the influence of nodes. Experimental results on nine synthetic and fifteen real networks show that under Susceptible–Infected–Recovered (SIR) model, R C N N outperforms the traditional benchmark methods on identifying critical nodes under spreading dynamic." @default.
- W3017207875 created "2020-04-24" @default.
- W3017207875 creator A5010806818 @default.
- W3017207875 creator A5029425733 @default.
- W3017207875 creator A5029972506 @default.
- W3017207875 creator A5073031098 @default.
- W3017207875 creator A5088594159 @default.
- W3017207875 date "2020-06-01" @default.
- W3017207875 modified "2023-10-15" @default.
- W3017207875 title "Identifying critical nodes in complex networks via graph convolutional networks" @default.
- W3017207875 cites W131619556 @default.
- W3017207875 cites W1932847118 @default.
- W3017207875 cites W1970913835 @default.
- W3017207875 cites W1971937094 @default.
- W3017207875 cites W1975443659 @default.
- W3017207875 cites W1985625141 @default.
- W3017207875 cites W1992250165 @default.
- W3017207875 cites W1994803330 @default.
- W3017207875 cites W2008620264 @default.
- W3017207875 cites W2010033398 @default.
- W3017207875 cites W2015953751 @default.
- W3017207875 cites W2019150902 @default.
- W3017207875 cites W2019243719 @default.
- W3017207875 cites W2025440555 @default.
- W3017207875 cites W2030539428 @default.
- W3017207875 cites W2030701825 @default.
- W3017207875 cites W2032998042 @default.
- W3017207875 cites W2056944867 @default.
- W3017207875 cites W2064643031 @default.
- W3017207875 cites W2066636486 @default.
- W3017207875 cites W2079219719 @default.
- W3017207875 cites W2101181377 @default.
- W3017207875 cites W2112090702 @default.
- W3017207875 cites W2112796928 @default.
- W3017207875 cites W2128036243 @default.
- W3017207875 cites W2133131640 @default.
- W3017207875 cites W2138621811 @default.
- W3017207875 cites W2147800946 @default.
- W3017207875 cites W2155167324 @default.
- W3017207875 cites W2171707538 @default.
- W3017207875 cites W2261717057 @default.
- W3017207875 cites W2528930196 @default.
- W3017207875 cites W2561673710 @default.
- W3017207875 cites W2580917121 @default.
- W3017207875 cites W2777190022 @default.
- W3017207875 cites W2886158220 @default.
- W3017207875 cites W2912690850 @default.
- W3017207875 cites W2919115771 @default.
- W3017207875 cites W2921369922 @default.
- W3017207875 cites W2921435736 @default.
- W3017207875 cites W2922172058 @default.
- W3017207875 cites W3007653990 @default.
- W3017207875 cites W3098438354 @default.
- W3017207875 cites W3099626846 @default.
- W3017207875 cites W3100069540 @default.
- W3017207875 doi "https://doi.org/10.1016/j.knosys.2020.105893" @default.
- W3017207875 hasPublicationYear "2020" @default.
- W3017207875 type Work @default.
- W3017207875 sameAs 3017207875 @default.
- W3017207875 citedByCount "55" @default.
- W3017207875 countsByYear W30172078752020 @default.
- W3017207875 countsByYear W30172078752021 @default.
- W3017207875 countsByYear W30172078752022 @default.
- W3017207875 countsByYear W30172078752023 @default.
- W3017207875 crossrefType "journal-article" @default.
- W3017207875 hasAuthorship W3017207875A5010806818 @default.
- W3017207875 hasAuthorship W3017207875A5029425733 @default.
- W3017207875 hasAuthorship W3017207875A5029972506 @default.
- W3017207875 hasAuthorship W3017207875A5073031098 @default.
- W3017207875 hasAuthorship W3017207875A5088594159 @default.
- W3017207875 hasConcept C132525143 @default.
- W3017207875 hasConcept C136764020 @default.
- W3017207875 hasConcept C31258907 @default.
- W3017207875 hasConcept C34947359 @default.
- W3017207875 hasConcept C41008148 @default.
- W3017207875 hasConcept C80444323 @default.
- W3017207875 hasConceptScore W3017207875C132525143 @default.
- W3017207875 hasConceptScore W3017207875C136764020 @default.
- W3017207875 hasConceptScore W3017207875C31258907 @default.
- W3017207875 hasConceptScore W3017207875C34947359 @default.
- W3017207875 hasConceptScore W3017207875C41008148 @default.
- W3017207875 hasConceptScore W3017207875C80444323 @default.
- W3017207875 hasFunder F4320321001 @default.
- W3017207875 hasFunder F4320323292 @default.
- W3017207875 hasFunder F4320335777 @default.
- W3017207875 hasLocation W30172078751 @default.
- W3017207875 hasOpenAccess W3017207875 @default.
- W3017207875 hasPrimaryLocation W30172078751 @default.
- W3017207875 hasRelatedWork W1548040509 @default.
- W3017207875 hasRelatedWork W1592248842 @default.
- W3017207875 hasRelatedWork W2061249130 @default.
- W3017207875 hasRelatedWork W2107367999 @default.
- W3017207875 hasRelatedWork W2130966263 @default.
- W3017207875 hasRelatedWork W2391817034 @default.
- W3017207875 hasRelatedWork W2773797126 @default.
- W3017207875 hasRelatedWork W2967651180 @default.
- W3017207875 hasRelatedWork W3010986440 @default.
- W3017207875 hasRelatedWork W4220758630 @default.