Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017261357> ?p ?o ?g. }
- W3017261357 endingPage "138244" @default.
- W3017261357 startingPage "138244" @default.
- W3017261357 abstract "Soil organic carbon (SOC) and soil total nitrogen (STN) are important indicators of soil health and play a key role in the global carbon and nitrogen cycles. High-resolution radar Sentinel-1 and multispectral Sentinel-2 images have the potential to investigate soil spatial distribution information over a large area, although Sentinel-1 and Sentinel-2 data have rarely been combined to map either SOC or STN content. In this study, we applied machine learning techniques to map both SOC and STN content in the southern part of Central Europe using digital elevation model (DEM) derivatives, multi-temporal Sentinel-1 and Sentinel-2 data, and evaluated the potential of different remote sensing sensors (Sentinel-1 and Sentinel-2) to predict SOC and STN content. Four machine-learners including random forest (RF), boosted regression trees (BRT), support vector machine (SVM) and Bagged CART were used to construct predictive models of SOC and STN contents based on 179 soil samples and different combinations of environmental covariates. The performance of these models was evaluated based on a 10-fold cross-validation method by three statistical indicators. Overall, the BRT model performed better than RF, SVM and Bagged CART, and these models yielded similar spatial distribution patterns of SOC and STN. Our results showed that multi-source sensor methods provided more accurate predictions of SOC and STN contents than individual sensors. The application of radar Sentinel-1 and multispectral Sentinel-2 images proved useful for predicting SOC and STN. A combination of Sentinel-1/2-derived predictors and DEM derivatives yielded the highest prediction accuracy. The prediction accuracy changed with and without the Sentinel-1/2-derived predictors, with the R2 for estimating both SOC and STN content using the BRT model increasing by 12.8% and 18.8%, respectively. Topographic variables were the main explanatory variables for SOC and STN predictions, where elevation was assigned as the variable with the most importance by the models. The results of this study illustrate the potential of free high-resolution radar Sentinel-1 and multispectral Sentinel-2 data as input when developing SOC and STN prediction models." @default.
- W3017261357 created "2020-04-24" @default.
- W3017261357 creator A5010104612 @default.
- W3017261357 creator A5037280151 @default.
- W3017261357 creator A5059927390 @default.
- W3017261357 creator A5081059188 @default.
- W3017261357 creator A5082715596 @default.
- W3017261357 creator A5085861870 @default.
- W3017261357 date "2020-08-01" @default.
- W3017261357 modified "2023-10-13" @default.
- W3017261357 title "High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms" @default.
- W3017261357 cites W1471436312 @default.
- W3017261357 cites W1792920273 @default.
- W3017261357 cites W1964396812 @default.
- W3017261357 cites W1971824428 @default.
- W3017261357 cites W1986938560 @default.
- W3017261357 cites W1990881969 @default.
- W3017261357 cites W1999822211 @default.
- W3017261357 cites W2000816264 @default.
- W3017261357 cites W2011010318 @default.
- W3017261357 cites W2014451925 @default.
- W3017261357 cites W2019894796 @default.
- W3017261357 cites W2023730643 @default.
- W3017261357 cites W2024760708 @default.
- W3017261357 cites W2027160099 @default.
- W3017261357 cites W2033275656 @default.
- W3017261357 cites W2037630084 @default.
- W3017261357 cites W2045679636 @default.
- W3017261357 cites W2048253728 @default.
- W3017261357 cites W2050179592 @default.
- W3017261357 cites W2054325787 @default.
- W3017261357 cites W2058191772 @default.
- W3017261357 cites W2060528109 @default.
- W3017261357 cites W2070358924 @default.
- W3017261357 cites W2071263221 @default.
- W3017261357 cites W2075505566 @default.
- W3017261357 cites W2076196252 @default.
- W3017261357 cites W2081340599 @default.
- W3017261357 cites W2086308119 @default.
- W3017261357 cites W2088730795 @default.
- W3017261357 cites W2097357552 @default.
- W3017261357 cites W2103133249 @default.
- W3017261357 cites W2110582217 @default.
- W3017261357 cites W2122955724 @default.
- W3017261357 cites W2135695572 @default.
- W3017261357 cites W2135733631 @default.
- W3017261357 cites W2136256197 @default.
- W3017261357 cites W2147939666 @default.
- W3017261357 cites W2153944160 @default.
- W3017261357 cites W2155570419 @default.
- W3017261357 cites W2158770403 @default.
- W3017261357 cites W2186294614 @default.
- W3017261357 cites W2193114191 @default.
- W3017261357 cites W2199365683 @default.
- W3017261357 cites W2207637114 @default.
- W3017261357 cites W2224936358 @default.
- W3017261357 cites W2285314639 @default.
- W3017261357 cites W2290606251 @default.
- W3017261357 cites W2308925226 @default.
- W3017261357 cites W2310573451 @default.
- W3017261357 cites W2339831229 @default.
- W3017261357 cites W2359735756 @default.
- W3017261357 cites W2399675776 @default.
- W3017261357 cites W2465825176 @default.
- W3017261357 cites W2516634516 @default.
- W3017261357 cites W2524646887 @default.
- W3017261357 cites W2527323007 @default.
- W3017261357 cites W2529073467 @default.
- W3017261357 cites W2549954685 @default.
- W3017261357 cites W2558083767 @default.
- W3017261357 cites W2564835738 @default.
- W3017261357 cites W2582794771 @default.
- W3017261357 cites W2583931072 @default.
- W3017261357 cites W2587629887 @default.
- W3017261357 cites W2588003345 @default.
- W3017261357 cites W2589872536 @default.
- W3017261357 cites W2594368475 @default.
- W3017261357 cites W2596671123 @default.
- W3017261357 cites W2599868771 @default.
- W3017261357 cites W2611504252 @default.
- W3017261357 cites W2613126452 @default.
- W3017261357 cites W2620888648 @default.
- W3017261357 cites W2621265885 @default.
- W3017261357 cites W2625696751 @default.
- W3017261357 cites W2653815135 @default.
- W3017261357 cites W2674441608 @default.
- W3017261357 cites W2744536770 @default.
- W3017261357 cites W2745131289 @default.
- W3017261357 cites W2752549100 @default.
- W3017261357 cites W2756443134 @default.
- W3017261357 cites W2757592514 @default.
- W3017261357 cites W2768533279 @default.
- W3017261357 cites W2774174446 @default.
- W3017261357 cites W2776440087 @default.
- W3017261357 cites W2782582361 @default.
- W3017261357 cites W2782652012 @default.
- W3017261357 cites W2790248359 @default.
- W3017261357 cites W2790349559 @default.