Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017313856> ?p ?o ?g. }
- W3017313856 abstract "Oxford Mental Illness and Suicide tool (OxMIS) is a brief, scalable, freely available, structured risk assessment tool to assess suicide risk in patients with severe mental illness (schizophrenia-spectrum disorders or bipolar disorder). OxMIS requires further external validation, but a lack of large-scale cohorts with relevant variables makes this challenging. Electronic health records provide possible data sources for external validation of risk prediction tools. However, they contain large amounts of information within free-text that is not readily extractable. In this study, we examined the feasibility of identifying suicide predictors needed to validate OxMIS in routinely collected electronic health records.In study 1, we manually reviewed electronic health records of 57 patients with severe mental illness to calculate OxMIS risk scores. In study 2, we examined the feasibility of using natural language processing to scale up this process. We used anonymized free-text documents from the Clinical Record Interactive Search database to train a named entity recognition model, a machine learning technique which recognizes concepts in free-text. The model identified eight concepts relevant for suicide risk assessment: medication (antidepressant/antipsychotic treatment), violence, education, self-harm, benefits receipt, drug/alcohol use disorder, suicide, and psychiatric admission. We assessed model performance in terms of precision (similar to positive predictive value), recall (similar to sensitivity) and F1 statistic (an overall performance measure).In study 1, we estimated suicide risk for all patients using the OxMIS calculator, giving a range of 12 month risk estimates from 0.1-3.4%. For 13 out of 17 predictors, there was no missing information in electronic health records. For the remaining 4 predictors missingness ranged from 7-26%; to account for these missing variables, it was possible for OxMIS to estimate suicide risk using a range of scores. In study 2, the named entity recognition model had an overall precision of 0.77, recall of 0.90 and F1 score of 0.83. The concept with the best precision and recall was medication (precision 0.84, recall 0.96) and the weakest were suicide (precision 0.37), and drug/alcohol use disorder (recall 0.61).It is feasible to estimate suicide risk with the OxMIS tool using predictors identified in routine clinical records. Predictors could be extracted using natural language processing. However, electronic health records differ from other data sources, particularly for family history variables, which creates methodological challenges." @default.
- W3017313856 created "2020-04-24" @default.
- W3017313856 creator A5011604873 @default.
- W3017313856 creator A5023670566 @default.
- W3017313856 creator A5024459386 @default.
- W3017313856 creator A5032537089 @default.
- W3017313856 creator A5037888113 @default.
- W3017313856 creator A5038673007 @default.
- W3017313856 creator A5045725813 @default.
- W3017313856 creator A5057055806 @default.
- W3017313856 creator A5069331474 @default.
- W3017313856 creator A5081596376 @default.
- W3017313856 date "2020-04-15" @default.
- W3017313856 modified "2023-09-23" @default.
- W3017313856 title "Identifying Predictors of Suicide in Severe Mental Illness: A Feasibility Study of a Clinical Prediction Rule (Oxford Mental Illness and Suicide Tool or OxMIS)" @default.
- W3017313856 cites W1980283223 @default.
- W3017313856 cites W2004901502 @default.
- W3017313856 cites W2040298842 @default.
- W3017313856 cites W2061585911 @default.
- W3017313856 cites W2085140923 @default.
- W3017313856 cites W2087969867 @default.
- W3017313856 cites W2095987352 @default.
- W3017313856 cites W2107314415 @default.
- W3017313856 cites W2121468917 @default.
- W3017313856 cites W2127064468 @default.
- W3017313856 cites W2131774270 @default.
- W3017313856 cites W2139865360 @default.
- W3017313856 cites W2140302476 @default.
- W3017313856 cites W2165259368 @default.
- W3017313856 cites W2195835703 @default.
- W3017313856 cites W2250539671 @default.
- W3017313856 cites W2290646566 @default.
- W3017313856 cites W2410895653 @default.
- W3017313856 cites W2424055918 @default.
- W3017313856 cites W2509888018 @default.
- W3017313856 cites W2518663325 @default.
- W3017313856 cites W2577646479 @default.
- W3017313856 cites W2596790840 @default.
- W3017313856 cites W2752429071 @default.
- W3017313856 cites W2775749895 @default.
- W3017313856 cites W2779099841 @default.
- W3017313856 cites W2799568506 @default.
- W3017313856 cites W2807596753 @default.
- W3017313856 cites W2904990534 @default.
- W3017313856 cites W2911873698 @default.
- W3017313856 cites W2913968412 @default.
- W3017313856 cites W2922413082 @default.
- W3017313856 cites W2938152444 @default.
- W3017313856 cites W2955434830 @default.
- W3017313856 cites W2971668428 @default.
- W3017313856 cites W2975086838 @default.
- W3017313856 cites W2986720101 @default.
- W3017313856 cites W3005056912 @default.
- W3017313856 cites W4213009331 @default.
- W3017313856 doi "https://doi.org/10.3389/fpsyt.2020.00268" @default.
- W3017313856 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7175991" @default.
- W3017313856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32351413" @default.
- W3017313856 hasPublicationYear "2020" @default.
- W3017313856 type Work @default.
- W3017313856 sameAs 3017313856 @default.
- W3017313856 citedByCount "20" @default.
- W3017313856 countsByYear W30173138562020 @default.
- W3017313856 countsByYear W30173138562021 @default.
- W3017313856 countsByYear W30173138562022 @default.
- W3017313856 countsByYear W30173138562023 @default.
- W3017313856 crossrefType "journal-article" @default.
- W3017313856 hasAuthorship W3017313856A5011604873 @default.
- W3017313856 hasAuthorship W3017313856A5023670566 @default.
- W3017313856 hasAuthorship W3017313856A5024459386 @default.
- W3017313856 hasAuthorship W3017313856A5032537089 @default.
- W3017313856 hasAuthorship W3017313856A5037888113 @default.
- W3017313856 hasAuthorship W3017313856A5038673007 @default.
- W3017313856 hasAuthorship W3017313856A5045725813 @default.
- W3017313856 hasAuthorship W3017313856A5057055806 @default.
- W3017313856 hasAuthorship W3017313856A5069331474 @default.
- W3017313856 hasAuthorship W3017313856A5081596376 @default.
- W3017313856 hasBestOaLocation W30173138561 @default.
- W3017313856 hasConcept C111919701 @default.
- W3017313856 hasConcept C118552586 @default.
- W3017313856 hasConcept C134362201 @default.
- W3017313856 hasConcept C15744967 @default.
- W3017313856 hasConcept C169900460 @default.
- W3017313856 hasConcept C2776174506 @default.
- W3017313856 hasConcept C2776674806 @default.
- W3017313856 hasConcept C2776836400 @default.
- W3017313856 hasConcept C2780842732 @default.
- W3017313856 hasConcept C3017944768 @default.
- W3017313856 hasConcept C41008148 @default.
- W3017313856 hasConcept C526869908 @default.
- W3017313856 hasConcept C545542383 @default.
- W3017313856 hasConcept C70410870 @default.
- W3017313856 hasConcept C71924100 @default.
- W3017313856 hasConceptScore W3017313856C111919701 @default.
- W3017313856 hasConceptScore W3017313856C118552586 @default.
- W3017313856 hasConceptScore W3017313856C134362201 @default.
- W3017313856 hasConceptScore W3017313856C15744967 @default.
- W3017313856 hasConceptScore W3017313856C169900460 @default.
- W3017313856 hasConceptScore W3017313856C2776174506 @default.
- W3017313856 hasConceptScore W3017313856C2776674806 @default.
- W3017313856 hasConceptScore W3017313856C2776836400 @default.