Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017332020> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3017332020 abstract "The largest earth observation programme Copernicus (http://copernicus.eu) makes it possible to perform terrestrial observations providing data for all kinds of purposes. One important objective is to monitor the land-use and land-cover changes with the Sentinel-2 satellite mission. These satellites measure the sun reflectance on the earth surface with multispectral cameras (13 channels between 440 nm to 2190 nm). Machine learning techniques like convolutional neural networks (CNN) are able to learn the link between the satellite image (spectrum) and the ground truth (land use class). In this talk, we give an overview about the state-of-the-art land-use classification with CNNs based on an open dataset. > > We use different out-of-box CNNs for the Keras deep learning library (https://keras.io/). All networks are either included in Keras itself or are available from Github repositories. We show the process of transfer learning for the RGB datasets. Furthermore, the minimal changes required to apply commonly used CNNs to multispectral data are demonstrated. Thus, the interested audience will be able to perform their own classification of remote sensing data within a very short time. Results of different network structures are visually compared. Especially the differences of transfer learning and learning from scratch are demonstrated. This also includes the amount of necessary training epochs, progress of training and validation error and visual comparison of the results of the trained networks. Finally, we give a quick overview about the current research topics including recurrent neural networks for spatio-temporal land-use classification and further applications of multi- and hyperspectral data, e.g. for the estimation of water parameters and soil characteristics." @default.
- W3017332020 created "2020-04-24" @default.
- W3017332020 creator A5045236047 @default.
- W3017332020 creator A5077641163 @default.
- W3017332020 date "2018-10-24" @default.
- W3017332020 modified "2023-09-23" @default.
- W3017332020 title "Satellite data is for everyone: Insights into modern remote sensing research with open data and Python" @default.
- W3017332020 doi "https://doi.org/10.5281/zenodo.4056516" @default.
- W3017332020 hasPublicationYear "2018" @default.
- W3017332020 type Work @default.
- W3017332020 sameAs 3017332020 @default.
- W3017332020 citedByCount "0" @default.
- W3017332020 crossrefType "journal-article" @default.
- W3017332020 hasAuthorship W3017332020A5045236047 @default.
- W3017332020 hasAuthorship W3017332020A5077641163 @default.
- W3017332020 hasConcept C108583219 @default.
- W3017332020 hasConcept C111919701 @default.
- W3017332020 hasConcept C119857082 @default.
- W3017332020 hasConcept C127413603 @default.
- W3017332020 hasConcept C146849305 @default.
- W3017332020 hasConcept C146978453 @default.
- W3017332020 hasConcept C147176958 @default.
- W3017332020 hasConcept C150899416 @default.
- W3017332020 hasConcept C154945302 @default.
- W3017332020 hasConcept C173163844 @default.
- W3017332020 hasConcept C19269812 @default.
- W3017332020 hasConcept C205649164 @default.
- W3017332020 hasConcept C2778102629 @default.
- W3017332020 hasConcept C2780648208 @default.
- W3017332020 hasConcept C39399123 @default.
- W3017332020 hasConcept C41008148 @default.
- W3017332020 hasConcept C4792198 @default.
- W3017332020 hasConcept C519991488 @default.
- W3017332020 hasConcept C62649853 @default.
- W3017332020 hasConcept C81363708 @default.
- W3017332020 hasConcept C82990744 @default.
- W3017332020 hasConceptScore W3017332020C108583219 @default.
- W3017332020 hasConceptScore W3017332020C111919701 @default.
- W3017332020 hasConceptScore W3017332020C119857082 @default.
- W3017332020 hasConceptScore W3017332020C127413603 @default.
- W3017332020 hasConceptScore W3017332020C146849305 @default.
- W3017332020 hasConceptScore W3017332020C146978453 @default.
- W3017332020 hasConceptScore W3017332020C147176958 @default.
- W3017332020 hasConceptScore W3017332020C150899416 @default.
- W3017332020 hasConceptScore W3017332020C154945302 @default.
- W3017332020 hasConceptScore W3017332020C173163844 @default.
- W3017332020 hasConceptScore W3017332020C19269812 @default.
- W3017332020 hasConceptScore W3017332020C205649164 @default.
- W3017332020 hasConceptScore W3017332020C2778102629 @default.
- W3017332020 hasConceptScore W3017332020C2780648208 @default.
- W3017332020 hasConceptScore W3017332020C39399123 @default.
- W3017332020 hasConceptScore W3017332020C41008148 @default.
- W3017332020 hasConceptScore W3017332020C4792198 @default.
- W3017332020 hasConceptScore W3017332020C519991488 @default.
- W3017332020 hasConceptScore W3017332020C62649853 @default.
- W3017332020 hasConceptScore W3017332020C81363708 @default.
- W3017332020 hasConceptScore W3017332020C82990744 @default.
- W3017332020 hasLocation W30173320201 @default.
- W3017332020 hasOpenAccess W3017332020 @default.
- W3017332020 hasPrimaryLocation W30173320201 @default.
- W3017332020 hasRelatedWork W2065167755 @default.
- W3017332020 hasRelatedWork W22685632 @default.
- W3017332020 hasRelatedWork W2614445056 @default.
- W3017332020 hasRelatedWork W2727957049 @default.
- W3017332020 hasRelatedWork W2766945567 @default.
- W3017332020 hasRelatedWork W2780382466 @default.
- W3017332020 hasRelatedWork W2899860882 @default.
- W3017332020 hasRelatedWork W2990447979 @default.
- W3017332020 hasRelatedWork W3006707799 @default.
- W3017332020 hasRelatedWork W3010769690 @default.
- W3017332020 hasRelatedWork W3037455594 @default.
- W3017332020 hasRelatedWork W3047528519 @default.
- W3017332020 hasRelatedWork W3047567221 @default.
- W3017332020 hasRelatedWork W3049231641 @default.
- W3017332020 hasRelatedWork W3049539214 @default.
- W3017332020 hasRelatedWork W3130244773 @default.
- W3017332020 hasRelatedWork W3173608877 @default.
- W3017332020 hasRelatedWork W3173891486 @default.
- W3017332020 hasRelatedWork W3190771647 @default.
- W3017332020 hasRelatedWork W3205925978 @default.
- W3017332020 isParatext "false" @default.
- W3017332020 isRetracted "false" @default.
- W3017332020 magId "3017332020" @default.
- W3017332020 workType "article" @default.