Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017357154> ?p ?o ?g. }
- W3017357154 endingPage "105386" @default.
- W3017357154 startingPage "105386" @default.
- W3017357154 abstract "The evolution of agriculture towards intensive farming leads to an increasing demand for animal identification associated with high traceability, driven by the need for quality control and welfare management in agricultural animals. Automatic identification of individual animals is an important step to achieve individualised care in terms of disease detection and control, and improvement of the food quality. For example, as feeding patterns can differ amongst pigs in the same pen, even in homogenous groups, automatic registration shows the most potential when applied to an individual pig. In the EU for instance, this capability is required for certification purposes. Although the RFID technology has been gradually developed and widely applied for this task, chip implanting might still be time-consuming and costly for current practical applications. In this paper, a novel framework composed of computer vision algorithms, machine learning and deep learning techniques is proposed to offer a relatively low-cost and scalable solution of pig recognition. Firstly, pig faces and eyes are detected automatically by two Haar feature-based cascade classifiers and one shallow convolutional neural network to extra high-quality images. Secondly, face recognition is performed by employing a deep convolutional neural network. Additionally, class activation maps generated by grad-CAM and saliency maps are utilised to visually understand how the discriminating parameters have been learned by the neural network. By applying the proposed approach on 10 randomly selected pigs filmed in farm condition, the proposed method demonstrates the superior performance against the state-of-art method with an accuracy of 83% over 320 testing images. The outcome of this study will facilitate the real-application of AI-based animal identification in swine production." @default.
- W3017357154 created "2020-04-24" @default.
- W3017357154 creator A5016194186 @default.
- W3017357154 creator A5043672558 @default.
- W3017357154 creator A5046493818 @default.
- W3017357154 creator A5050527931 @default.
- W3017357154 creator A5056036277 @default.
- W3017357154 creator A5073578337 @default.
- W3017357154 creator A5083005821 @default.
- W3017357154 creator A5087731729 @default.
- W3017357154 date "2020-06-01" @default.
- W3017357154 modified "2023-10-16" @default.
- W3017357154 title "An adaptive pig face recognition approach using Convolutional Neural Networks" @default.
- W3017357154 cites W1977336475 @default.
- W3017357154 cites W2015678706 @default.
- W3017357154 cites W2058333183 @default.
- W3017357154 cites W2087352304 @default.
- W3017357154 cites W2092004232 @default.
- W3017357154 cites W2100506249 @default.
- W3017357154 cites W2101608954 @default.
- W3017357154 cites W2217896605 @default.
- W3017357154 cites W2312795231 @default.
- W3017357154 cites W2508477805 @default.
- W3017357154 cites W2567491866 @default.
- W3017357154 cites W2791690647 @default.
- W3017357154 cites W2794578160 @default.
- W3017357154 cites W2845797600 @default.
- W3017357154 cites W2886201707 @default.
- W3017357154 cites W2899609705 @default.
- W3017357154 cites W2900330501 @default.
- W3017357154 cites W2904452810 @default.
- W3017357154 cites W2904918578 @default.
- W3017357154 cites W2950288321 @default.
- W3017357154 cites W2955428161 @default.
- W3017357154 cites W2976038271 @default.
- W3017357154 cites W2977012283 @default.
- W3017357154 cites W2987875276 @default.
- W3017357154 cites W2995313058 @default.
- W3017357154 cites W2995917169 @default.
- W3017357154 cites W2997707473 @default.
- W3017357154 doi "https://doi.org/10.1016/j.compag.2020.105386" @default.
- W3017357154 hasPublicationYear "2020" @default.
- W3017357154 type Work @default.
- W3017357154 sameAs 3017357154 @default.
- W3017357154 citedByCount "76" @default.
- W3017357154 countsByYear W30173571542020 @default.
- W3017357154 countsByYear W30173571542021 @default.
- W3017357154 countsByYear W30173571542022 @default.
- W3017357154 countsByYear W30173571542023 @default.
- W3017357154 crossrefType "journal-article" @default.
- W3017357154 hasAuthorship W3017357154A5016194186 @default.
- W3017357154 hasAuthorship W3017357154A5043672558 @default.
- W3017357154 hasAuthorship W3017357154A5046493818 @default.
- W3017357154 hasAuthorship W3017357154A5050527931 @default.
- W3017357154 hasAuthorship W3017357154A5056036277 @default.
- W3017357154 hasAuthorship W3017357154A5073578337 @default.
- W3017357154 hasAuthorship W3017357154A5083005821 @default.
- W3017357154 hasAuthorship W3017357154A5087731729 @default.
- W3017357154 hasBestOaLocation W30173571542 @default.
- W3017357154 hasConcept C108583219 @default.
- W3017357154 hasConcept C115903868 @default.
- W3017357154 hasConcept C116834253 @default.
- W3017357154 hasConcept C119857082 @default.
- W3017357154 hasConcept C13280743 @default.
- W3017357154 hasConcept C138885662 @default.
- W3017357154 hasConcept C140793950 @default.
- W3017357154 hasConcept C153180895 @default.
- W3017357154 hasConcept C153876917 @default.
- W3017357154 hasConcept C154945302 @default.
- W3017357154 hasConcept C185798385 @default.
- W3017357154 hasConcept C205649164 @default.
- W3017357154 hasConcept C2776401178 @default.
- W3017357154 hasConcept C2780069929 @default.
- W3017357154 hasConcept C2994599422 @default.
- W3017357154 hasConcept C41008148 @default.
- W3017357154 hasConcept C41895202 @default.
- W3017357154 hasConcept C48044578 @default.
- W3017357154 hasConcept C50644808 @default.
- W3017357154 hasConcept C59822182 @default.
- W3017357154 hasConcept C77088390 @default.
- W3017357154 hasConcept C81363708 @default.
- W3017357154 hasConcept C86803240 @default.
- W3017357154 hasConceptScore W3017357154C108583219 @default.
- W3017357154 hasConceptScore W3017357154C115903868 @default.
- W3017357154 hasConceptScore W3017357154C116834253 @default.
- W3017357154 hasConceptScore W3017357154C119857082 @default.
- W3017357154 hasConceptScore W3017357154C13280743 @default.
- W3017357154 hasConceptScore W3017357154C138885662 @default.
- W3017357154 hasConceptScore W3017357154C140793950 @default.
- W3017357154 hasConceptScore W3017357154C153180895 @default.
- W3017357154 hasConceptScore W3017357154C153876917 @default.
- W3017357154 hasConceptScore W3017357154C154945302 @default.
- W3017357154 hasConceptScore W3017357154C185798385 @default.
- W3017357154 hasConceptScore W3017357154C205649164 @default.
- W3017357154 hasConceptScore W3017357154C2776401178 @default.
- W3017357154 hasConceptScore W3017357154C2780069929 @default.
- W3017357154 hasConceptScore W3017357154C2994599422 @default.
- W3017357154 hasConceptScore W3017357154C41008148 @default.