Matches in SemOpenAlex for { <https://semopenalex.org/work/W3017679096> ?p ?o ?g. }
- W3017679096 endingPage "76172" @default.
- W3017679096 startingPage "76163" @default.
- W3017679096 abstract "Automated pavement distress detection benefits road maintenance and operation by providing the condition and location of various distress rapidly. Existing work generally relies on manual labor or specific algorithms trained by dedicated datasets, which hinders the efficiency and applicable scenarios of methods. Street view map provides interactive panoramas of a large scale of urban roadway network, and is updated in a recurrent manner by the provider. This paper proposed a deep learning method based on a pre-trained neural network architecture to identify and locate different distress in real-time. About 20,000 street view images were collected and labeled as the training dataset using the Baidu e-map. Eight types of distress are notated using Yolov3 deep learning architecture. The scale-invariant feature transform (SIFT) descriptors combined with GPS and bounding boxes were applied to judge the deterioration of the distress. A decision tree was designed to evaluate the change of the distress over some time. A typical road in Shanghai was selected to verify the effectiveness of the proposed model. The images of the road from 2015 to 2017 were collected from the street view map. The results showed that the mean average precision of the proposed algorithm is 88.37%, demonstrating the vast potential of applying this method to detect pavement distress. 43 distress were newly generated, and 49 previous distress were patched in the two years. The proposed method can assist the authorities to schedule the maintenance activities more effectively." @default.
- W3017679096 created "2020-05-01" @default.
- W3017679096 creator A5027475930 @default.
- W3017679096 creator A5043951691 @default.
- W3017679096 creator A5072331448 @default.
- W3017679096 creator A5077938995 @default.
- W3017679096 date "2020-01-01" @default.
- W3017679096 modified "2023-10-18" @default.
- W3017679096 title "Automated Pavement Distress Detection and Deterioration Analysis Using Street View Map" @default.
- W3017679096 cites W1984020445 @default.
- W3017679096 cites W2005750530 @default.
- W3017679096 cites W2008488233 @default.
- W3017679096 cites W2008935780 @default.
- W3017679096 cites W2017550618 @default.
- W3017679096 cites W2028143024 @default.
- W3017679096 cites W2032420132 @default.
- W3017679096 cites W2035006112 @default.
- W3017679096 cites W2037402385 @default.
- W3017679096 cites W2066971882 @default.
- W3017679096 cites W2070079950 @default.
- W3017679096 cites W2081857838 @default.
- W3017679096 cites W2085261163 @default.
- W3017679096 cites W2130432690 @default.
- W3017679096 cites W2194775991 @default.
- W3017679096 cites W2278098559 @default.
- W3017679096 cites W2312405072 @default.
- W3017679096 cites W2621121878 @default.
- W3017679096 cites W2735386636 @default.
- W3017679096 cites W2746523014 @default.
- W3017679096 cites W2752810206 @default.
- W3017679096 cites W2757455114 @default.
- W3017679096 cites W2777379616 @default.
- W3017679096 cites W2787372910 @default.
- W3017679096 cites W2799323087 @default.
- W3017679096 cites W2884143694 @default.
- W3017679096 cites W2906977256 @default.
- W3017679096 cites W2917162781 @default.
- W3017679096 cites W2918885827 @default.
- W3017679096 cites W2944441395 @default.
- W3017679096 cites W2997770686 @default.
- W3017679096 cites W3001456352 @default.
- W3017679096 cites W3006924889 @default.
- W3017679096 cites W4233921622 @default.
- W3017679096 cites W4255421341 @default.
- W3017679096 cites W934757427 @default.
- W3017679096 doi "https://doi.org/10.1109/access.2020.2989028" @default.
- W3017679096 hasPublicationYear "2020" @default.
- W3017679096 type Work @default.
- W3017679096 sameAs 3017679096 @default.
- W3017679096 citedByCount "18" @default.
- W3017679096 countsByYear W30176790962021 @default.
- W3017679096 countsByYear W30176790962022 @default.
- W3017679096 countsByYear W30176790962023 @default.
- W3017679096 crossrefType "journal-article" @default.
- W3017679096 hasAuthorship W3017679096A5027475930 @default.
- W3017679096 hasAuthorship W3017679096A5043951691 @default.
- W3017679096 hasAuthorship W3017679096A5072331448 @default.
- W3017679096 hasAuthorship W3017679096A5077938995 @default.
- W3017679096 hasBestOaLocation W30176790961 @default.
- W3017679096 hasConcept C108583219 @default.
- W3017679096 hasConcept C111919701 @default.
- W3017679096 hasConcept C119857082 @default.
- W3017679096 hasConcept C139265228 @default.
- W3017679096 hasConcept C154945302 @default.
- W3017679096 hasConcept C18903297 @default.
- W3017679096 hasConcept C205649164 @default.
- W3017679096 hasConcept C2778755073 @default.
- W3017679096 hasConcept C41008148 @default.
- W3017679096 hasConcept C50644808 @default.
- W3017679096 hasConcept C58640448 @default.
- W3017679096 hasConcept C60229501 @default.
- W3017679096 hasConcept C63584917 @default.
- W3017679096 hasConcept C68387754 @default.
- W3017679096 hasConcept C76155785 @default.
- W3017679096 hasConcept C86803240 @default.
- W3017679096 hasConceptScore W3017679096C108583219 @default.
- W3017679096 hasConceptScore W3017679096C111919701 @default.
- W3017679096 hasConceptScore W3017679096C119857082 @default.
- W3017679096 hasConceptScore W3017679096C139265228 @default.
- W3017679096 hasConceptScore W3017679096C154945302 @default.
- W3017679096 hasConceptScore W3017679096C18903297 @default.
- W3017679096 hasConceptScore W3017679096C205649164 @default.
- W3017679096 hasConceptScore W3017679096C2778755073 @default.
- W3017679096 hasConceptScore W3017679096C41008148 @default.
- W3017679096 hasConceptScore W3017679096C50644808 @default.
- W3017679096 hasConceptScore W3017679096C58640448 @default.
- W3017679096 hasConceptScore W3017679096C60229501 @default.
- W3017679096 hasConceptScore W3017679096C63584917 @default.
- W3017679096 hasConceptScore W3017679096C68387754 @default.
- W3017679096 hasConceptScore W3017679096C76155785 @default.
- W3017679096 hasConceptScore W3017679096C86803240 @default.
- W3017679096 hasFunder F4320321001 @default.
- W3017679096 hasFunder F4320335777 @default.
- W3017679096 hasFunder F4320335787 @default.
- W3017679096 hasLocation W30176790961 @default.
- W3017679096 hasOpenAccess W3017679096 @default.
- W3017679096 hasPrimaryLocation W30176790961 @default.
- W3017679096 hasRelatedWork W2795261237 @default.