Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018413731> ?p ?o ?g. }
- W3018413731 endingPage "10171" @default.
- W3018413731 startingPage "10165" @default.
- W3018413731 abstract "Researchers and policy makers worldwide are interested in measuring the subjective well-being of populations. When users post on social media, they leave behind digital traces that reflect their thoughts and feelings. Aggregation of such digital traces may make it possible to monitor well-being at large scale. However, social media-based methods need to be robust to regional effects if they are to produce reliable estimates. Using a sample of 1.53 billion geotagged English tweets, we provide a systematic evaluation of word-level and data-driven methods for text analysis for generating well-being estimates for 1,208 US counties. We compared Twitter-based county-level estimates with well-being measurements provided by the Gallup-Sharecare Well-Being Index survey through 1.73 million phone surveys. We find that word-level methods (e.g., Linguistic Inquiry and Word Count [LIWC] 2015 and Language Assessment by Mechanical Turk [LabMT]) yielded inconsistent county-level well-being measurements due to regional, cultural, and socioeconomic differences in language use. However, removing as few as three of the most frequent words led to notable improvements in well-being prediction. Data-driven methods provided robust estimates, approximating the Gallup data at up to r = 0.64. We show that the findings generalized to county socioeconomic and health outcomes and were robust when poststratifying the samples to be more representative of the general US population. Regional well-being estimation from social media data seems to be robust when supervised data-driven methods are used." @default.
- W3018413731 created "2020-05-01" @default.
- W3018413731 creator A5029821479 @default.
- W3018413731 creator A5041710385 @default.
- W3018413731 creator A5044944954 @default.
- W3018413731 creator A5046253607 @default.
- W3018413731 creator A5079039372 @default.
- W3018413731 creator A5079154791 @default.
- W3018413731 date "2020-04-27" @default.
- W3018413731 modified "2023-10-17" @default.
- W3018413731 title "Estimating geographic subjective well-being from Twitter: A comparison of dictionary and data-driven language methods" @default.
- W3018413731 cites W1596538443 @default.
- W3018413731 cites W1964246211 @default.
- W3018413731 cites W1979230891 @default.
- W3018413731 cites W1979839410 @default.
- W3018413731 cites W1983872841 @default.
- W3018413731 cites W2008803468 @default.
- W3018413731 cites W2022792389 @default.
- W3018413731 cites W2048529682 @default.
- W3018413731 cites W2055461003 @default.
- W3018413731 cites W2099366530 @default.
- W3018413731 cites W2105853798 @default.
- W3018413731 cites W2118778378 @default.
- W3018413731 cites W2119595472 @default.
- W3018413731 cites W2123329834 @default.
- W3018413731 cites W2127259621 @default.
- W3018413731 cites W2155144982 @default.
- W3018413731 cites W2164513234 @default.
- W3018413731 cites W2339570520 @default.
- W3018413731 cites W2556622256 @default.
- W3018413731 cites W2736388402 @default.
- W3018413731 cites W2741216199 @default.
- W3018413731 cites W2932216334 @default.
- W3018413731 cites W2953178162 @default.
- W3018413731 cites W2961303963 @default.
- W3018413731 cites W2963747121 @default.
- W3018413731 cites W2980278192 @default.
- W3018413731 cites W3018413731 @default.
- W3018413731 cites W864667832 @default.
- W3018413731 doi "https://doi.org/10.1073/pnas.1906364117" @default.
- W3018413731 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7229753" @default.
- W3018413731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32341156" @default.
- W3018413731 hasPublicationYear "2020" @default.
- W3018413731 type Work @default.
- W3018413731 sameAs 3018413731 @default.
- W3018413731 citedByCount "108" @default.
- W3018413731 countsByYear W30184137312019 @default.
- W3018413731 countsByYear W30184137312020 @default.
- W3018413731 countsByYear W30184137312021 @default.
- W3018413731 countsByYear W30184137312022 @default.
- W3018413731 countsByYear W30184137312023 @default.
- W3018413731 crossrefType "journal-article" @default.
- W3018413731 hasAuthorship W3018413731A5029821479 @default.
- W3018413731 hasAuthorship W3018413731A5041710385 @default.
- W3018413731 hasAuthorship W3018413731A5044944954 @default.
- W3018413731 hasAuthorship W3018413731A5046253607 @default.
- W3018413731 hasAuthorship W3018413731A5079039372 @default.
- W3018413731 hasAuthorship W3018413731A5079154791 @default.
- W3018413731 hasBestOaLocation W30184137311 @default.
- W3018413731 hasConcept C105795698 @default.
- W3018413731 hasConcept C127413603 @default.
- W3018413731 hasConcept C136764020 @default.
- W3018413731 hasConcept C138885662 @default.
- W3018413731 hasConcept C144024400 @default.
- W3018413731 hasConcept C147077947 @default.
- W3018413731 hasConcept C149782125 @default.
- W3018413731 hasConcept C149923435 @default.
- W3018413731 hasConcept C201995342 @default.
- W3018413731 hasConcept C204321447 @default.
- W3018413731 hasConcept C205649164 @default.
- W3018413731 hasConcept C2522767166 @default.
- W3018413731 hasConcept C2524010 @default.
- W3018413731 hasConcept C2778707766 @default.
- W3018413731 hasConcept C2778755073 @default.
- W3018413731 hasConcept C2908647359 @default.
- W3018413731 hasConcept C33923547 @default.
- W3018413731 hasConcept C41008148 @default.
- W3018413731 hasConcept C41895202 @default.
- W3018413731 hasConcept C518677369 @default.
- W3018413731 hasConcept C58640448 @default.
- W3018413731 hasConcept C90805587 @default.
- W3018413731 hasConcept C96250715 @default.
- W3018413731 hasConceptScore W3018413731C105795698 @default.
- W3018413731 hasConceptScore W3018413731C127413603 @default.
- W3018413731 hasConceptScore W3018413731C136764020 @default.
- W3018413731 hasConceptScore W3018413731C138885662 @default.
- W3018413731 hasConceptScore W3018413731C144024400 @default.
- W3018413731 hasConceptScore W3018413731C147077947 @default.
- W3018413731 hasConceptScore W3018413731C149782125 @default.
- W3018413731 hasConceptScore W3018413731C149923435 @default.
- W3018413731 hasConceptScore W3018413731C201995342 @default.
- W3018413731 hasConceptScore W3018413731C204321447 @default.
- W3018413731 hasConceptScore W3018413731C205649164 @default.
- W3018413731 hasConceptScore W3018413731C2522767166 @default.
- W3018413731 hasConceptScore W3018413731C2524010 @default.
- W3018413731 hasConceptScore W3018413731C2778707766 @default.
- W3018413731 hasConceptScore W3018413731C2778755073 @default.
- W3018413731 hasConceptScore W3018413731C2908647359 @default.