Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018540571> ?p ?o ?g. }
- W3018540571 endingPage "1431" @default.
- W3018540571 startingPage "1423" @default.
- W3018540571 abstract "Adult CD34+ hematopoietic stem/progenitor cells (HSPC) in the systemic circulation are bone marrow-derived and have the propensity of maintaining cardiovascular health. Activation of angiotensin-converting enzyme-2 (ACE2)-angiotensin-(1-7)-Mas receptor pathway, the vascular protective axis of the renin-angiotensin system (RAS), stimulates vasculogenic functions of HSPCs. In a previous study, exposure to hypoxia increased the expressions of ACE2 and Mas, and stimulated ACE2 shedding. The current study tested if blood flow restriction exercise (BFR)-induced regional hypoxia recapitulates the in vitro observations in healthy adults. Hypoxia was induced by 80% limb occlusion pressure (LOP) via inflation cuff. Muscle oxygen saturation was determined using near-infrared spectroscopy. Peripheral blood was collected 30 min after quiet sitting (control) or after BFR. Lin-CD45lowCD34+ HSPCs were enumerated by flow cytometry, and ACE and ACE2 activities were determined in plasma and cell lysates and supernatants. Regional hypoxia resulted in muscle oxygen saturation of 17.5% compared with 49.7% in the control condition (P < 0.0001, n = 9). Circulating HSPCs were increased following BFR (834.8 ± 62.1/mL) compared with control (365 ± 59, P < 0.001, n = 7), which was associated with increased stromal-derived factor 1α and vascular endothelial growth factor receptor levels by four- and threefold, respectively (P < 0.001). ACE2 activity was increased in the whole cell lysates of HSPCs, resulting in an ACE2-to-ACE ratio of 11.7 ± 0.5 in BFR vs 9.1 ± 0.9 in control (P < 0.05). Cell supernatants have threefold increase in the ACE2-to-ACE ratio following BFR compared with control (P < 0.001). Collectively, these findings provide strong evidence for the upregulation of ACE2 by acute regional hypoxia in vivo. Hypoxic exercise regimens appear to be promising means of enhancing vascular regenerative capacity.NEW & NOTEWORTHY Although many studies have explored the mechanisms of skeletal muscle growth and adaptation with hypoxia exercise interventions, less attention has been given to the potential for vascular adaptation and regenerative capacity. This study shows for the first time an acute upregulation of the angiotensin-converting enzyme 2 and increase in CD34+ vasculogenic cells following an acute bout of blood flow restriction with low-intensity exercise. These rapid changes collectively promote skeletal muscle angiogenesis. Therefore, this study supports the potential of hypoxic exercise interventions with low intensity for vascular and muscle health." @default.
- W3018540571 created "2020-05-01" @default.
- W3018540571 creator A5005312306 @default.
- W3018540571 creator A5021578026 @default.
- W3018540571 creator A5037915418 @default.
- W3018540571 creator A5042458473 @default.
- W3018540571 creator A5042999493 @default.
- W3018540571 creator A5058030826 @default.
- W3018540571 date "2020-05-01" @default.
- W3018540571 modified "2023-10-11" @default.
- W3018540571 title "Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults" @default.
- W3018540571 cites W1502896205 @default.
- W3018540571 cites W1554012182 @default.
- W3018540571 cites W1966470795 @default.
- W3018540571 cites W1978526958 @default.
- W3018540571 cites W1979012325 @default.
- W3018540571 cites W1982310662 @default.
- W3018540571 cites W1986621631 @default.
- W3018540571 cites W2002724549 @default.
- W3018540571 cites W2004674477 @default.
- W3018540571 cites W2004840558 @default.
- W3018540571 cites W2012091836 @default.
- W3018540571 cites W2019724225 @default.
- W3018540571 cites W2023195146 @default.
- W3018540571 cites W2023261133 @default.
- W3018540571 cites W2031280595 @default.
- W3018540571 cites W2031684831 @default.
- W3018540571 cites W2051256505 @default.
- W3018540571 cites W2053704719 @default.
- W3018540571 cites W2058729725 @default.
- W3018540571 cites W2071435082 @default.
- W3018540571 cites W2071833071 @default.
- W3018540571 cites W2076479848 @default.
- W3018540571 cites W210527411 @default.
- W3018540571 cites W2122857515 @default.
- W3018540571 cites W2124594608 @default.
- W3018540571 cites W2136756141 @default.
- W3018540571 cites W2140725738 @default.
- W3018540571 cites W2158404092 @default.
- W3018540571 cites W2163591961 @default.
- W3018540571 cites W2253167126 @default.
- W3018540571 cites W2269576606 @default.
- W3018540571 cites W2292512244 @default.
- W3018540571 cites W2328849045 @default.
- W3018540571 cites W2483781189 @default.
- W3018540571 cites W2533535820 @default.
- W3018540571 cites W2593177058 @default.
- W3018540571 cites W2724978978 @default.
- W3018540571 cites W2741138754 @default.
- W3018540571 cites W2790356515 @default.
- W3018540571 cites W2883848393 @default.
- W3018540571 cites W2905943152 @default.
- W3018540571 cites W2938003893 @default.
- W3018540571 cites W2951524956 @default.
- W3018540571 cites W2972986412 @default.
- W3018540571 doi "https://doi.org/10.1152/japplphysiol.00109.2020" @default.
- W3018540571 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7272753" @default.
- W3018540571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32324479" @default.
- W3018540571 hasPublicationYear "2020" @default.
- W3018540571 type Work @default.
- W3018540571 sameAs 3018540571 @default.
- W3018540571 citedByCount "16" @default.
- W3018540571 countsByYear W30185405712020 @default.
- W3018540571 countsByYear W30185405712021 @default.
- W3018540571 countsByYear W30185405712022 @default.
- W3018540571 countsByYear W30185405712023 @default.
- W3018540571 crossrefType "journal-article" @default.
- W3018540571 hasAuthorship W3018540571A5005312306 @default.
- W3018540571 hasAuthorship W3018540571A5021578026 @default.
- W3018540571 hasAuthorship W3018540571A5037915418 @default.
- W3018540571 hasAuthorship W3018540571A5042458473 @default.
- W3018540571 hasAuthorship W3018540571A5042999493 @default.
- W3018540571 hasAuthorship W3018540571A5058030826 @default.
- W3018540571 hasBestOaLocation W30185405711 @default.
- W3018540571 hasConcept C10205521 @default.
- W3018540571 hasConcept C109159458 @default.
- W3018540571 hasConcept C126322002 @default.
- W3018540571 hasConcept C134018914 @default.
- W3018540571 hasConcept C178790620 @default.
- W3018540571 hasConcept C185592680 @default.
- W3018540571 hasConcept C198710026 @default.
- W3018540571 hasConcept C201750760 @default.
- W3018540571 hasConcept C2777714996 @default.
- W3018540571 hasConcept C2778534260 @default.
- W3018540571 hasConcept C2780007613 @default.
- W3018540571 hasConcept C2780152582 @default.
- W3018540571 hasConcept C2780672939 @default.
- W3018540571 hasConcept C28328180 @default.
- W3018540571 hasConcept C2908929049 @default.
- W3018540571 hasConcept C540031477 @default.
- W3018540571 hasConcept C71924100 @default.
- W3018540571 hasConcept C7836513 @default.
- W3018540571 hasConcept C84393581 @default.
- W3018540571 hasConcept C86803240 @default.
- W3018540571 hasConcept C95444343 @default.
- W3018540571 hasConceptScore W3018540571C10205521 @default.
- W3018540571 hasConceptScore W3018540571C109159458 @default.
- W3018540571 hasConceptScore W3018540571C126322002 @default.