Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018651684> ?p ?o ?g. }
- W3018651684 endingPage "51" @default.
- W3018651684 startingPage "27" @default.
- W3018651684 abstract "• Leaf disease recognition using hand crafted features and shallow classifiers. • Leaf disease recognition using deep learning. • Problems facing crop pest and disease recognition. • Performance comparison of 10 CNN architectures for leaf disease recognition. • Recent advances in crop pest and disease recognition. Fast and accurate plant disease detection is critical to increasing agricultural productivity in a sustainable way. Traditionally, human experts have been relied upon to diagnose anomalies in plants caused by diseases, pests, nutritional deficiencies or extreme weather. However, this is expensive, time consuming and in some cases impractical. To counter these challenges, research into the use of image processing techniques for plant disease recognition has become a hot research topic. In this paper, we provide a comprehensive review of recent studies carried out in the area of crop pest and disease recognition using image processing and machine learning techniques. We hope that this work will be a valuable resource for researchers in this area of crop pest and disease recognition using image processing techniques. In particular, we concentrate on the use of RGB images owing to the low cost and high availability of digital RGB cameras. We report that recent efforts have focused on the use of deep learning instead of training shallow classifiers using hand-crafted features. Researchers have reported high recognition accuracies on particular datasets but in many cases, the performance of those systems deteriorated significantly when tested on different datasets or in field conditions. Nevertheless, progress made so far has been encouraging. Experimental results showing the leaf disease recognition performance of ten CNN architectures in terms of recognition accuracy, recall, precision, specificity, F1-score, training duration and storage requirements are also presented. Subsequently, recommendations are made on the most suitable architectures to deploy in conventional as well as mobile/embedded computing environments. We also discuss some of the unresolved challenges that need to be addressed in order to develop practical automatic plant disease recognition systems for use in field conditions." @default.
- W3018651684 created "2020-05-01" @default.
- W3018651684 creator A5046667484 @default.
- W3018651684 creator A5073175295 @default.
- W3018651684 creator A5078595394 @default.
- W3018651684 date "2021-03-01" @default.
- W3018651684 modified "2023-10-18" @default.
- W3018651684 title "Recent advances in image processing techniques for automated leaf pest and disease recognition – A review" @default.
- W3018651684 cites W1564527624 @default.
- W3018651684 cites W1570448133 @default.
- W3018651684 cites W1808644423 @default.
- W3018651684 cites W1849277567 @default.
- W3018651684 cites W1987677572 @default.
- W3018651684 cites W1990898621 @default.
- W3018651684 cites W2005028659 @default.
- W3018651684 cites W2068791392 @default.
- W3018651684 cites W2079465209 @default.
- W3018651684 cites W2097117768 @default.
- W3018651684 cites W2116040950 @default.
- W3018651684 cites W2118246710 @default.
- W3018651684 cites W2131415551 @default.
- W3018651684 cites W2147800946 @default.
- W3018651684 cites W2163352848 @default.
- W3018651684 cites W2166326933 @default.
- W3018651684 cites W2183341477 @default.
- W3018651684 cites W2194775991 @default.
- W3018651684 cites W2277854822 @default.
- W3018651684 cites W2302952123 @default.
- W3018651684 cites W2463733399 @default.
- W3018651684 cites W2470368200 @default.
- W3018651684 cites W2473156356 @default.
- W3018651684 cites W2486256985 @default.
- W3018651684 cites W2501369945 @default.
- W3018651684 cites W2509232174 @default.
- W3018651684 cites W2513191602 @default.
- W3018651684 cites W2528215143 @default.
- W3018651684 cites W2531409750 @default.
- W3018651684 cites W2549139847 @default.
- W3018651684 cites W2550043609 @default.
- W3018651684 cites W2561572938 @default.
- W3018651684 cites W2612844455 @default.
- W3018651684 cites W2614850301 @default.
- W3018651684 cites W2618530766 @default.
- W3018651684 cites W2686668286 @default.
- W3018651684 cites W2714342494 @default.
- W3018651684 cites W2730129132 @default.
- W3018651684 cites W2731165298 @default.
- W3018651684 cites W2733343268 @default.
- W3018651684 cites W2750506686 @default.
- W3018651684 cites W2753403518 @default.
- W3018651684 cites W2754406296 @default.
- W3018651684 cites W2758216428 @default.
- W3018651684 cites W2758893285 @default.
- W3018651684 cites W2763040271 @default.
- W3018651684 cites W2770103218 @default.
- W3018651684 cites W2786995559 @default.
- W3018651684 cites W2789255992 @default.
- W3018651684 cites W2792362452 @default.
- W3018651684 cites W2795016359 @default.
- W3018651684 cites W2795127440 @default.
- W3018651684 cites W2799437918 @default.
- W3018651684 cites W2799842361 @default.
- W3018651684 cites W2801958709 @default.
- W3018651684 cites W2808709127 @default.
- W3018651684 cites W2809512934 @default.
- W3018651684 cites W2884416373 @default.
- W3018651684 cites W2886359012 @default.
- W3018651684 cites W2887902433 @default.
- W3018651684 cites W2889543275 @default.
- W3018651684 cites W2893835493 @default.
- W3018651684 cites W2894058049 @default.
- W3018651684 cites W2897350321 @default.
- W3018651684 cites W2900498021 @default.
- W3018651684 cites W2901380936 @default.
- W3018651684 cites W2904063712 @default.
- W3018651684 cites W2911433502 @default.
- W3018651684 cites W2914201981 @default.
- W3018651684 cites W2919115771 @default.
- W3018651684 cites W2927613875 @default.
- W3018651684 cites W2940118123 @default.
- W3018651684 cites W2943376264 @default.
- W3018651684 cites W2944599236 @default.
- W3018651684 cites W2945051190 @default.
- W3018651684 cites W2962770929 @default.
- W3018651684 cites W2962858109 @default.
- W3018651684 cites W2963125010 @default.
- W3018651684 cites W2963446712 @default.
- W3018651684 cites W2963523428 @default.
- W3018651684 cites W2963820222 @default.
- W3018651684 cites W2964350391 @default.
- W3018651684 cites W2969584825 @default.
- W3018651684 cites W2969837424 @default.
- W3018651684 cites W2969896545 @default.
- W3018651684 cites W3106250896 @default.
- W3018651684 cites W4239072543 @default.
- W3018651684 cites W4248635988 @default.
- W3018651684 cites W4249616221 @default.
- W3018651684 cites W639708223 @default.