Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018691504> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3018691504 abstract "It is still a difficult and challenging task for a drone to maneuver autonomously at low altitude in the urban environments. This is due to the complexity of the urban environment and its unpredictability. Many researches have been carried out in the past decades until recent time, to find a way to solve this problem using powerful sensors such as laser rangefinder sensor, RGB-D camera, stereo vision system, LIDAR and computer vision methods. This paper is aimed to present an urban intelligent navigator for drone using CNN (convolutional neural network). The application of computer vision (object detection) is cheap and has low power consumption compared to other kinds of vision systems. The machine learning allows a drone to detect and recognize all the objects and obstacles on the roads, which can block drone's way. One thousand images were captured of six different street objects (tree, lamp, bump sign, free-smoking sign, no-horn sign, and roof-wall). Those images were used as a dataset to create a machine learning using Faster R-CNN (region convolutional neural network) method. Three machine-learning models were created using different parameters for each model. The controlled parameters are the initial learning rate and the batch-size. Only the third model could successfully detect and recognize all the objects at a specified location showing 98% accuracy." @default.
- W3018691504 created "2020-05-01" @default.
- W3018691504 creator A5006909661 @default.
- W3018691504 creator A5031801771 @default.
- W3018691504 creator A5067076211 @default.
- W3018691504 creator A5070437241 @default.
- W3018691504 date "2019-12-01" @default.
- W3018691504 modified "2023-09-23" @default.
- W3018691504 title "Urban Intelligent Navigator for Drone Using Convolutional Neural Network (CNN)" @default.
- W3018691504 cites W1506806321 @default.
- W3018691504 cites W1514205146 @default.
- W3018691504 cites W1988115241 @default.
- W3018691504 cites W2109552880 @default.
- W3018691504 cites W2123432765 @default.
- W3018691504 doi "https://doi.org/10.1109/smartnets48225.2019.9069781" @default.
- W3018691504 hasPublicationYear "2019" @default.
- W3018691504 type Work @default.
- W3018691504 sameAs 3018691504 @default.
- W3018691504 citedByCount "0" @default.
- W3018691504 crossrefType "proceedings-article" @default.
- W3018691504 hasAuthorship W3018691504A5006909661 @default.
- W3018691504 hasAuthorship W3018691504A5031801771 @default.
- W3018691504 hasAuthorship W3018691504A5067076211 @default.
- W3018691504 hasAuthorship W3018691504A5070437241 @default.
- W3018691504 hasConcept C108583219 @default.
- W3018691504 hasConcept C127313418 @default.
- W3018691504 hasConcept C153180895 @default.
- W3018691504 hasConcept C154945302 @default.
- W3018691504 hasConcept C2524010 @default.
- W3018691504 hasConcept C2776151529 @default.
- W3018691504 hasConcept C2777210771 @default.
- W3018691504 hasConcept C31972630 @default.
- W3018691504 hasConcept C33923547 @default.
- W3018691504 hasConcept C41008148 @default.
- W3018691504 hasConcept C50644808 @default.
- W3018691504 hasConcept C51399673 @default.
- W3018691504 hasConcept C52622490 @default.
- W3018691504 hasConcept C5339829 @default.
- W3018691504 hasConcept C54355233 @default.
- W3018691504 hasConcept C59519942 @default.
- W3018691504 hasConcept C62649853 @default.
- W3018691504 hasConcept C81363708 @default.
- W3018691504 hasConcept C86803240 @default.
- W3018691504 hasConceptScore W3018691504C108583219 @default.
- W3018691504 hasConceptScore W3018691504C127313418 @default.
- W3018691504 hasConceptScore W3018691504C153180895 @default.
- W3018691504 hasConceptScore W3018691504C154945302 @default.
- W3018691504 hasConceptScore W3018691504C2524010 @default.
- W3018691504 hasConceptScore W3018691504C2776151529 @default.
- W3018691504 hasConceptScore W3018691504C2777210771 @default.
- W3018691504 hasConceptScore W3018691504C31972630 @default.
- W3018691504 hasConceptScore W3018691504C33923547 @default.
- W3018691504 hasConceptScore W3018691504C41008148 @default.
- W3018691504 hasConceptScore W3018691504C50644808 @default.
- W3018691504 hasConceptScore W3018691504C51399673 @default.
- W3018691504 hasConceptScore W3018691504C52622490 @default.
- W3018691504 hasConceptScore W3018691504C5339829 @default.
- W3018691504 hasConceptScore W3018691504C54355233 @default.
- W3018691504 hasConceptScore W3018691504C59519942 @default.
- W3018691504 hasConceptScore W3018691504C62649853 @default.
- W3018691504 hasConceptScore W3018691504C81363708 @default.
- W3018691504 hasConceptScore W3018691504C86803240 @default.
- W3018691504 hasLocation W30186915041 @default.
- W3018691504 hasOpenAccess W3018691504 @default.
- W3018691504 hasPrimaryLocation W30186915041 @default.
- W3018691504 hasRelatedWork W12592258 @default.
- W3018691504 hasRelatedWork W12793662 @default.
- W3018691504 hasRelatedWork W13678974 @default.
- W3018691504 hasRelatedWork W1605477 @default.
- W3018691504 hasRelatedWork W2366400 @default.
- W3018691504 hasRelatedWork W2585641 @default.
- W3018691504 hasRelatedWork W49089 @default.
- W3018691504 hasRelatedWork W5893334 @default.
- W3018691504 hasRelatedWork W7537351 @default.
- W3018691504 hasRelatedWork W9190101 @default.
- W3018691504 isParatext "false" @default.
- W3018691504 isRetracted "false" @default.
- W3018691504 magId "3018691504" @default.
- W3018691504 workType "article" @default.