Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018720072> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3018720072 abstract "Handwriting is a skill to express thoughts, ideas, and language. Over the years, medical doctors have been well-known for having illegible cursive handwritings and has been a generally accepted matter. The datasets used in this paper are samples of doctors cursive handwriting collected from several clinics and hospitals of Metro Manila, Quezon City and Taytay, Rizal. In this paper, we present the Handwriting Recognition System using Deep Convolutional Recurrent Neural Network that is developed in order to identify the text in the image of prescriptions written by the doctors and show the readable text conversion of the cursive handwriting. In this study two models were evaluated and based on the experimentation CRNN with model-based normalization scheme than the CRNN alone. This study achieved 76% training accuracy rate and the developed model was found successfully implemented in a mobile application, having achieved a validation accuracy of 72% for the validation set from the remaining 540 images of prescription. The mobile application was validated for the second time using the captured 48 handwriting samples written by the researchers and correctly identified 17 images out of 48 this gives us a 35% validation accuracy." @default.
- W3018720072 created "2020-05-01" @default.
- W3018720072 creator A5005359226 @default.
- W3018720072 creator A5006522658 @default.
- W3018720072 creator A5039903147 @default.
- W3018720072 creator A5040428208 @default.
- W3018720072 creator A5050052438 @default.
- W3018720072 creator A5065266327 @default.
- W3018720072 creator A5076879440 @default.
- W3018720072 creator A5084738236 @default.
- W3018720072 date "2019-11-01" @default.
- W3018720072 modified "2023-10-09" @default.
- W3018720072 title "Doctor’s Cursive Handwriting Recognition System Using Deep Learning" @default.
- W3018720072 cites W1409285973 @default.
- W3018720072 cites W2060580591 @default.
- W3018720072 cites W2170942820 @default.
- W3018720072 cites W2192666648 @default.
- W3018720072 cites W2321567439 @default.
- W3018720072 cites W2582838830 @default.
- W3018720072 cites W2963742473 @default.
- W3018720072 cites W2964325005 @default.
- W3018720072 cites W3104707293 @default.
- W3018720072 doi "https://doi.org/10.1109/hnicem48295.2019.9073521" @default.
- W3018720072 hasPublicationYear "2019" @default.
- W3018720072 type Work @default.
- W3018720072 sameAs 3018720072 @default.
- W3018720072 citedByCount "8" @default.
- W3018720072 countsByYear W30187200722022 @default.
- W3018720072 countsByYear W30187200722023 @default.
- W3018720072 crossrefType "proceedings-article" @default.
- W3018720072 hasAuthorship W3018720072A5005359226 @default.
- W3018720072 hasAuthorship W3018720072A5006522658 @default.
- W3018720072 hasAuthorship W3018720072A5039903147 @default.
- W3018720072 hasAuthorship W3018720072A5040428208 @default.
- W3018720072 hasAuthorship W3018720072A5050052438 @default.
- W3018720072 hasAuthorship W3018720072A5065266327 @default.
- W3018720072 hasAuthorship W3018720072A5076879440 @default.
- W3018720072 hasAuthorship W3018720072A5084738236 @default.
- W3018720072 hasConcept C108583219 @default.
- W3018720072 hasConcept C112640561 @default.
- W3018720072 hasConcept C136886441 @default.
- W3018720072 hasConcept C144024400 @default.
- W3018720072 hasConcept C153180895 @default.
- W3018720072 hasConcept C154945302 @default.
- W3018720072 hasConcept C164086593 @default.
- W3018720072 hasConcept C19165224 @default.
- W3018720072 hasConcept C2426938 @default.
- W3018720072 hasConcept C2778943297 @default.
- W3018720072 hasConcept C2779386606 @default.
- W3018720072 hasConcept C28490314 @default.
- W3018720072 hasConcept C31972630 @default.
- W3018720072 hasConcept C41008148 @default.
- W3018720072 hasConcept C52622490 @default.
- W3018720072 hasConcept C71924100 @default.
- W3018720072 hasConcept C81363708 @default.
- W3018720072 hasConcept C98274493 @default.
- W3018720072 hasConceptScore W3018720072C108583219 @default.
- W3018720072 hasConceptScore W3018720072C112640561 @default.
- W3018720072 hasConceptScore W3018720072C136886441 @default.
- W3018720072 hasConceptScore W3018720072C144024400 @default.
- W3018720072 hasConceptScore W3018720072C153180895 @default.
- W3018720072 hasConceptScore W3018720072C154945302 @default.
- W3018720072 hasConceptScore W3018720072C164086593 @default.
- W3018720072 hasConceptScore W3018720072C19165224 @default.
- W3018720072 hasConceptScore W3018720072C2426938 @default.
- W3018720072 hasConceptScore W3018720072C2778943297 @default.
- W3018720072 hasConceptScore W3018720072C2779386606 @default.
- W3018720072 hasConceptScore W3018720072C28490314 @default.
- W3018720072 hasConceptScore W3018720072C31972630 @default.
- W3018720072 hasConceptScore W3018720072C41008148 @default.
- W3018720072 hasConceptScore W3018720072C52622490 @default.
- W3018720072 hasConceptScore W3018720072C71924100 @default.
- W3018720072 hasConceptScore W3018720072C81363708 @default.
- W3018720072 hasConceptScore W3018720072C98274493 @default.
- W3018720072 hasLocation W30187200721 @default.
- W3018720072 hasOpenAccess W3018720072 @default.
- W3018720072 hasPrimaryLocation W30187200721 @default.
- W3018720072 hasRelatedWork W2095725793 @default.
- W3018720072 hasRelatedWork W2109465031 @default.
- W3018720072 hasRelatedWork W2113292028 @default.
- W3018720072 hasRelatedWork W2148295954 @default.
- W3018720072 hasRelatedWork W3018720072 @default.
- W3018720072 hasRelatedWork W3123298315 @default.
- W3018720072 hasRelatedWork W3197206152 @default.
- W3018720072 hasRelatedWork W4312417841 @default.
- W3018720072 hasRelatedWork W4321369474 @default.
- W3018720072 hasRelatedWork W2105355661 @default.
- W3018720072 isParatext "false" @default.
- W3018720072 isRetracted "false" @default.
- W3018720072 magId "3018720072" @default.
- W3018720072 workType "article" @default.