Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018742707> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3018742707 abstract "Spinal Malalignment is a chronic disease that is widespread across the world. It causes different diseases such as Stenosis, Scoliosis, Osteoporotic Fractures, Thoracolumbar fractures, Disc degeneration, etc. The diagnosis of such disease is generally done by analyzing the Magnetic Resonance Imaging (MRI) scan of the lumbar spine region. MRI analysis is done by well experienced medical professionals (radiologists and orthopedists). The flip side to this inspection is that it is time-consuming and may be subjected to a lack of accuracy. The manual segmentation of MRI scans from a large number of scan images is a tedious and time-consuming process. Thus, there is a need for automatic segmentation and analysis of spine MRI scans to improve clinical outputs and the accuracy of spinal measurements. In recent, the rise of deep learning technologies is making a revolution in medical systems. It is capable of analyzing a large amount of data and yield better accuracy. So, deep learning approaches can be efficiently used for the automatic segmentation of MRI scans. In this paper, an overview of spinal MRI segmentation using deep learning techniques is presented. The disease diagnosis from spine MRI is conferred. Then the state-of-art research in the automatic image segmentation using Convolutional Neural Network (CNN) is discussed. A comparative analysis is done on various deep learning techniques based on the performance metrics is presented. Finally, the evaluation metrics for automatic segmentation is provided along with the comparison of the state-of-art results." @default.
- W3018742707 created "2020-05-01" @default.
- W3018742707 creator A5003440557 @default.
- W3018742707 creator A5031659211 @default.
- W3018742707 creator A5032332252 @default.
- W3018742707 creator A5044595104 @default.
- W3018742707 date "2020-03-01" @default.
- W3018742707 modified "2023-10-01" @default.
- W3018742707 title "Spine Magnetic Resonance Image Segmentation Using Deep Learning Techniques" @default.
- W3018742707 cites W1522885406 @default.
- W3018742707 cites W2000235333 @default.
- W3018742707 cites W2064037367 @default.
- W3018742707 cites W2085676849 @default.
- W3018742707 cites W2096754770 @default.
- W3018742707 cites W2097379642 @default.
- W3018742707 cites W2310992461 @default.
- W3018742707 cites W2321283863 @default.
- W3018742707 cites W2484913078 @default.
- W3018742707 cites W2578452911 @default.
- W3018742707 cites W2748151168 @default.
- W3018742707 cites W2775015891 @default.
- W3018742707 cites W2790565150 @default.
- W3018742707 cites W2800043213 @default.
- W3018742707 cites W2806818134 @default.
- W3018742707 cites W2896467917 @default.
- W3018742707 cites W2897367969 @default.
- W3018742707 cites W2898181160 @default.
- W3018742707 cites W2910109268 @default.
- W3018742707 cites W2919624876 @default.
- W3018742707 cites W2934562040 @default.
- W3018742707 cites W2937006295 @default.
- W3018742707 cites W2998166198 @default.
- W3018742707 cites W3001623296 @default.
- W3018742707 cites W4247214019 @default.
- W3018742707 cites W4250071522 @default.
- W3018742707 doi "https://doi.org/10.1109/icaccs48705.2020.9074218" @default.
- W3018742707 hasPublicationYear "2020" @default.
- W3018742707 type Work @default.
- W3018742707 sameAs 3018742707 @default.
- W3018742707 citedByCount "3" @default.
- W3018742707 countsByYear W30187427072021 @default.
- W3018742707 countsByYear W30187427072022 @default.
- W3018742707 crossrefType "proceedings-article" @default.
- W3018742707 hasAuthorship W3018742707A5003440557 @default.
- W3018742707 hasAuthorship W3018742707A5031659211 @default.
- W3018742707 hasAuthorship W3018742707A5032332252 @default.
- W3018742707 hasAuthorship W3018742707A5044595104 @default.
- W3018742707 hasConcept C108583219 @default.
- W3018742707 hasConcept C124504099 @default.
- W3018742707 hasConcept C126838900 @default.
- W3018742707 hasConcept C143409427 @default.
- W3018742707 hasConcept C154945302 @default.
- W3018742707 hasConcept C31972630 @default.
- W3018742707 hasConcept C41008148 @default.
- W3018742707 hasConcept C71924100 @default.
- W3018742707 hasConcept C89600930 @default.
- W3018742707 hasConceptScore W3018742707C108583219 @default.
- W3018742707 hasConceptScore W3018742707C124504099 @default.
- W3018742707 hasConceptScore W3018742707C126838900 @default.
- W3018742707 hasConceptScore W3018742707C143409427 @default.
- W3018742707 hasConceptScore W3018742707C154945302 @default.
- W3018742707 hasConceptScore W3018742707C31972630 @default.
- W3018742707 hasConceptScore W3018742707C41008148 @default.
- W3018742707 hasConceptScore W3018742707C71924100 @default.
- W3018742707 hasConceptScore W3018742707C89600930 @default.
- W3018742707 hasLocation W30187427071 @default.
- W3018742707 hasOpenAccess W3018742707 @default.
- W3018742707 hasPrimaryLocation W30187427071 @default.
- W3018742707 hasRelatedWork W1669643531 @default.
- W3018742707 hasRelatedWork W1721780360 @default.
- W3018742707 hasRelatedWork W2110230079 @default.
- W3018742707 hasRelatedWork W2117664411 @default.
- W3018742707 hasRelatedWork W2117933325 @default.
- W3018742707 hasRelatedWork W2122581818 @default.
- W3018742707 hasRelatedWork W2159066190 @default.
- W3018742707 hasRelatedWork W2739874619 @default.
- W3018742707 hasRelatedWork W2948658236 @default.
- W3018742707 hasRelatedWork W1967061043 @default.
- W3018742707 isParatext "false" @default.
- W3018742707 isRetracted "false" @default.
- W3018742707 magId "3018742707" @default.
- W3018742707 workType "article" @default.