Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018829287> ?p ?o ?g. }
- W3018829287 endingPage "1371" @default.
- W3018829287 startingPage "1371" @default.
- W3018829287 abstract "Modern multibeam echosounders can record backscatter data returned from the water above the seafloor. These water-column data can potentially be used to detect and map aquatic vegetation such as kelp, and thus contribute to improving marine habitat mapping. However, the strong sidelobe interference noise that typically contaminates water-column data is a major obstacle to the detection of targets lying close to the seabed, such as aquatic vegetation. This article presents an algorithm to filter the noise and artefacts due to interference from the sidelobes of the receive array by normalizing the slant-range signal in each ping. To evaluate the potential of the filtered data for the detection of aquatic vegetation, we acquired a comprehensive water-column dataset over a controlled experimental site. The experimental site was a transplanted patch of giant kelp (Macrocystis pyrifera) forest of known biomass and spatial configuration, obtained by harvesting several individuals from a nearby forest, measuring and weighing them, and arranging them manually on an area of seafloor previously bare. The water-column dataset was acquired with a Kongsberg EM 2040 C multibeam echosounder at several frequencies (200, 300, and 400 kHz) and pulse lengths (25, 50, and 100 μs). The data acquisition process was repeated after removing half of the plants, to simulate a thinner forest. The giant kelp plants produced evident echoes in the water-column data at all settings. The slant-range signal normalization filter greatly improved the visual quality of the data, but the filtered data may under-represent the true amount of acoustic energy in the water column. Nonetheless, the overall acoustic backscatter measured after filtering was significantly lower, by 2 to 4 dB on average, for data acquired over the thinned forest compared to the original experiment. We discuss the implications of these results for the potential use of multibeam echosounder water-column data in marine habitat mapping." @default.
- W3018829287 created "2020-05-01" @default.
- W3018829287 creator A5075734722 @default.
- W3018829287 creator A5076479959 @default.
- W3018829287 creator A5078668260 @default.
- W3018829287 date "2020-04-26" @default.
- W3018829287 modified "2023-09-26" @default.
- W3018829287 title "Automated Filtering of Multibeam Water-Column Data to Detect Relative Abundance of Giant Kelp (Macrocystis pyrifera)" @default.
- W3018829287 cites W1688089989 @default.
- W3018829287 cites W1822681744 @default.
- W3018829287 cites W1853574713 @default.
- W3018829287 cites W1972888393 @default.
- W3018829287 cites W1975414089 @default.
- W3018829287 cites W1995772470 @default.
- W3018829287 cites W2042805319 @default.
- W3018829287 cites W2050772570 @default.
- W3018829287 cites W2052365664 @default.
- W3018829287 cites W2057729288 @default.
- W3018829287 cites W2058798697 @default.
- W3018829287 cites W2066654966 @default.
- W3018829287 cites W2081022555 @default.
- W3018829287 cites W2083633948 @default.
- W3018829287 cites W2089744986 @default.
- W3018829287 cites W2098790623 @default.
- W3018829287 cites W2126603993 @default.
- W3018829287 cites W2133469759 @default.
- W3018829287 cites W2136447426 @default.
- W3018829287 cites W2136836123 @default.
- W3018829287 cites W2140295805 @default.
- W3018829287 cites W2142138659 @default.
- W3018829287 cites W2150070282 @default.
- W3018829287 cites W2155794442 @default.
- W3018829287 cites W2162512820 @default.
- W3018829287 cites W2162871318 @default.
- W3018829287 cites W2164842637 @default.
- W3018829287 cites W2473009902 @default.
- W3018829287 cites W2528485824 @default.
- W3018829287 cites W2533348959 @default.
- W3018829287 cites W2731348249 @default.
- W3018829287 cites W2782100517 @default.
- W3018829287 cites W2789716261 @default.
- W3018829287 cites W2791589456 @default.
- W3018829287 cites W2811407369 @default.
- W3018829287 cites W2892562894 @default.
- W3018829287 cites W2898331420 @default.
- W3018829287 cites W2910240488 @default.
- W3018829287 cites W2915998281 @default.
- W3018829287 cites W2979736561 @default.
- W3018829287 cites W2997805611 @default.
- W3018829287 cites W3165957706 @default.
- W3018829287 cites W4242872037 @default.
- W3018829287 doi "https://doi.org/10.3390/rs12091371" @default.
- W3018829287 hasPublicationYear "2020" @default.
- W3018829287 type Work @default.
- W3018829287 sameAs 3018829287 @default.
- W3018829287 citedByCount "20" @default.
- W3018829287 countsByYear W30188292872020 @default.
- W3018829287 countsByYear W30188292872021 @default.
- W3018829287 countsByYear W30188292872022 @default.
- W3018829287 countsByYear W30188292872023 @default.
- W3018829287 crossrefType "journal-article" @default.
- W3018829287 hasAuthorship W3018829287A5075734722 @default.
- W3018829287 hasAuthorship W3018829287A5076479959 @default.
- W3018829287 hasAuthorship W3018829287A5078668260 @default.
- W3018829287 hasBestOaLocation W30188292871 @default.
- W3018829287 hasConcept C111368507 @default.
- W3018829287 hasConcept C122846477 @default.
- W3018829287 hasConcept C127313418 @default.
- W3018829287 hasConcept C153274386 @default.
- W3018829287 hasConcept C18903297 @default.
- W3018829287 hasConcept C2776705890 @default.
- W3018829287 hasConcept C2779110813 @default.
- W3018829287 hasConcept C39432304 @default.
- W3018829287 hasConcept C62649853 @default.
- W3018829287 hasConcept C86803240 @default.
- W3018829287 hasConceptScore W3018829287C111368507 @default.
- W3018829287 hasConceptScore W3018829287C122846477 @default.
- W3018829287 hasConceptScore W3018829287C127313418 @default.
- W3018829287 hasConceptScore W3018829287C153274386 @default.
- W3018829287 hasConceptScore W3018829287C18903297 @default.
- W3018829287 hasConceptScore W3018829287C2776705890 @default.
- W3018829287 hasConceptScore W3018829287C2779110813 @default.
- W3018829287 hasConceptScore W3018829287C39432304 @default.
- W3018829287 hasConceptScore W3018829287C62649853 @default.
- W3018829287 hasConceptScore W3018829287C86803240 @default.
- W3018829287 hasFunder F4320311447 @default.
- W3018829287 hasFunder F4320321983 @default.
- W3018829287 hasIssue "9" @default.
- W3018829287 hasLocation W30188292871 @default.
- W3018829287 hasLocation W30188292872 @default.
- W3018829287 hasLocation W30188292873 @default.
- W3018829287 hasOpenAccess W3018829287 @default.
- W3018829287 hasPrimaryLocation W30188292871 @default.
- W3018829287 hasRelatedWork W2024726464 @default.
- W3018829287 hasRelatedWork W2025355611 @default.
- W3018829287 hasRelatedWork W2083038005 @default.
- W3018829287 hasRelatedWork W2083932223 @default.
- W3018829287 hasRelatedWork W2100971049 @default.