Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018909497> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3018909497 endingPage "197" @default.
- W3018909497 startingPage "192" @default.
- W3018909497 abstract "OBJECTIVE. The purpose of this study was to assess, by analyzing features of the primary tumor with 18F-FDG PET, the utility of deep machine learning with a convolutional neural network (CNN) in predicting the potential of newly diagnosed non-small cell lung cancer (NSCLC) to metastasize to lymph nodes or distant sites. MATERIALS AND METHODS. Consecutively registered patients with newly diagnosed, untreated NSCLC were retrospectively included in a single-center study. PET images were segmented with local image features extraction software, and data were used for CNN training and validation after data augmentation strategies were used. The standard of reference for designation of N category was invasive lymph node sampling or 6-month follow-up imaging. Distant metastases developing during the study follow-up period were assessed by imaging (CT or PET/CT), in tissue obtained from new suspected sites of disease, and according to the treating oncologist's designation. RESULTS. A total of 264 patients with NSCLC participated in follow-up for a median of 25.2 months (range, 6-43 months). N category designations were available for 223 of 264 (84.5%) patients, and M category for all 264. The sensitivity, specificity, and accuracy of CNN for predicting node positivity were 0.74 ± 0.32, 0.84 ± 0.16, and 0.80 ± 0.17. The corresponding values for predicting distant metastases were 0.45 ± 0.08, 0.79 ± 0.06, and 0.63 ± 0.05. CONCLUSION. This study showed that using a CNN to analyze segmented PET images of patients with previously untreated NSCLC can yield moderately high accuracy for designation of N category, although this may be insufficient to preclude invasive lymph node sampling. The sensitivity of the CNN in predicting distant metastases is fairly poor, although specificity is moderately high." @default.
- W3018909497 created "2020-05-01" @default.
- W3018909497 creator A5018483053 @default.
- W3018909497 creator A5036544965 @default.
- W3018909497 creator A5039462222 @default.
- W3018909497 creator A5050029611 @default.
- W3018909497 creator A5065405706 @default.
- W3018909497 date "2020-07-01" @default.
- W3018909497 modified "2023-10-03" @default.
- W3018909497 title "Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non–Small Cell Lung Cancer on FDG PET Images" @default.
- W3018909497 cites W167760760 @default.
- W3018909497 cites W1757407923 @default.
- W3018909497 cites W1987054640 @default.
- W3018909497 cites W2031300874 @default.
- W3018909497 cites W2034045386 @default.
- W3018909497 cites W2078480326 @default.
- W3018909497 cites W2085109919 @default.
- W3018909497 cites W2089245306 @default.
- W3018909497 cites W2109061552 @default.
- W3018909497 cites W2112234835 @default.
- W3018909497 cites W2254976097 @default.
- W3018909497 cites W2294953175 @default.
- W3018909497 cites W2331032341 @default.
- W3018909497 cites W2511565156 @default.
- W3018909497 cites W2731899572 @default.
- W3018909497 cites W2753207486 @default.
- W3018909497 cites W2757566931 @default.
- W3018909497 cites W2768135365 @default.
- W3018909497 cites W2809254203 @default.
- W3018909497 cites W2809373841 @default.
- W3018909497 cites W2809848353 @default.
- W3018909497 cites W2887297890 @default.
- W3018909497 cites W2905184173 @default.
- W3018909497 cites W2912550564 @default.
- W3018909497 cites W2919115771 @default.
- W3018909497 cites W2950535890 @default.
- W3018909497 cites W3098977020 @default.
- W3018909497 doi "https://doi.org/10.2214/ajr.19.22346" @default.
- W3018909497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32348182" @default.
- W3018909497 hasPublicationYear "2020" @default.
- W3018909497 type Work @default.
- W3018909497 sameAs 3018909497 @default.
- W3018909497 citedByCount "34" @default.
- W3018909497 countsByYear W30189094972020 @default.
- W3018909497 countsByYear W30189094972021 @default.
- W3018909497 countsByYear W30189094972022 @default.
- W3018909497 countsByYear W30189094972023 @default.
- W3018909497 crossrefType "journal-article" @default.
- W3018909497 hasAuthorship W3018909497A5018483053 @default.
- W3018909497 hasAuthorship W3018909497A5036544965 @default.
- W3018909497 hasAuthorship W3018909497A5039462222 @default.
- W3018909497 hasAuthorship W3018909497A5050029611 @default.
- W3018909497 hasAuthorship W3018909497A5065405706 @default.
- W3018909497 hasConcept C126322002 @default.
- W3018909497 hasConcept C126838900 @default.
- W3018909497 hasConcept C143998085 @default.
- W3018909497 hasConcept C154945302 @default.
- W3018909497 hasConcept C2775842073 @default.
- W3018909497 hasConcept C2776256026 @default.
- W3018909497 hasConcept C2780849966 @default.
- W3018909497 hasConcept C2989005 @default.
- W3018909497 hasConcept C41008148 @default.
- W3018909497 hasConcept C71924100 @default.
- W3018909497 hasConcept C81363708 @default.
- W3018909497 hasConceptScore W3018909497C126322002 @default.
- W3018909497 hasConceptScore W3018909497C126838900 @default.
- W3018909497 hasConceptScore W3018909497C143998085 @default.
- W3018909497 hasConceptScore W3018909497C154945302 @default.
- W3018909497 hasConceptScore W3018909497C2775842073 @default.
- W3018909497 hasConceptScore W3018909497C2776256026 @default.
- W3018909497 hasConceptScore W3018909497C2780849966 @default.
- W3018909497 hasConceptScore W3018909497C2989005 @default.
- W3018909497 hasConceptScore W3018909497C41008148 @default.
- W3018909497 hasConceptScore W3018909497C71924100 @default.
- W3018909497 hasConceptScore W3018909497C81363708 @default.
- W3018909497 hasIssue "1" @default.
- W3018909497 hasLocation W30189094971 @default.
- W3018909497 hasLocation W30189094972 @default.
- W3018909497 hasOpenAccess W3018909497 @default.
- W3018909497 hasPrimaryLocation W30189094971 @default.
- W3018909497 hasRelatedWork W1964235690 @default.
- W3018909497 hasRelatedWork W1967687873 @default.
- W3018909497 hasRelatedWork W2013568115 @default.
- W3018909497 hasRelatedWork W2015770879 @default.
- W3018909497 hasRelatedWork W2069054254 @default.
- W3018909497 hasRelatedWork W2074829765 @default.
- W3018909497 hasRelatedWork W2101113442 @default.
- W3018909497 hasRelatedWork W2417682463 @default.
- W3018909497 hasRelatedWork W2976372616 @default.
- W3018909497 hasRelatedWork W4297666546 @default.
- W3018909497 hasVolume "215" @default.
- W3018909497 isParatext "false" @default.
- W3018909497 isRetracted "false" @default.
- W3018909497 magId "3018909497" @default.
- W3018909497 workType "article" @default.