Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018968744> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3018968744 endingPage "35" @default.
- W3018968744 startingPage "35" @default.
- W3018968744 abstract "The surface roughness of the ground parts is an essential factor in the assessment of the grinding process, and a crucial criterion in choosing the dressing and grinding tools and parameters. Additionally, the surface roughness directly influences the functionality of the workpiece. The application of artificial intelligence in the prediction of complex results of machining processes, such as surface roughness and cutting forces has increasingly become popular. This paper deals with the design of the appropriate artificial neural network for the prediction of the ground surface roughness and grinding forces, through an individual integrated acoustic emission (AE) sensor in the machine tool. Two models were trained and tested. Once using only the grinding parameters, and another with both acoustic emission signals and grinding parameters as input data. The recorded AE-signal was pre-processed, amplified and denoised. The feedforward neural network was chosen for the modeling with Bayesian backpropagation, and the model was tested by various experiments with different grinding and neural network parameters. It was found that the predictions presented by the achieved network parameters model agreed well with the experimental results with a superb accuracy of 99 percent. The results also showed that the AE signals act as an additional input parameter in addition to the grinding parameters, and could significantly increase the efficiency of the neural network in predicting the grinding forces and the surface roughness." @default.
- W3018968744 created "2020-05-01" @default.
- W3018968744 creator A5055516322 @default.
- W3018968744 creator A5058574111 @default.
- W3018968744 creator A5064684161 @default.
- W3018968744 date "2020-04-25" @default.
- W3018968744 modified "2023-09-29" @default.
- W3018968744 title "First Steps through Intelligent Grinding Using Machine Learning via Integrated Acoustic Emission Sensors" @default.
- W3018968744 cites W1972243751 @default.
- W3018968744 cites W1985673869 @default.
- W3018968744 cites W1986115104 @default.
- W3018968744 cites W1997296604 @default.
- W3018968744 cites W2009364408 @default.
- W3018968744 cites W2012241321 @default.
- W3018968744 cites W2018816054 @default.
- W3018968744 cites W2033260201 @default.
- W3018968744 cites W2036400266 @default.
- W3018968744 cites W2048399281 @default.
- W3018968744 cites W2061303464 @default.
- W3018968744 cites W2074955445 @default.
- W3018968744 cites W2109898335 @default.
- W3018968744 cites W2162807413 @default.
- W3018968744 cites W2471759346 @default.
- W3018968744 cites W2760045367 @default.
- W3018968744 cites W2887097038 @default.
- W3018968744 cites W3008903605 @default.
- W3018968744 doi "https://doi.org/10.3390/jmmp4020035" @default.
- W3018968744 hasPublicationYear "2020" @default.
- W3018968744 type Work @default.
- W3018968744 sameAs 3018968744 @default.
- W3018968744 citedByCount "16" @default.
- W3018968744 countsByYear W30189687442020 @default.
- W3018968744 countsByYear W30189687442021 @default.
- W3018968744 countsByYear W30189687442022 @default.
- W3018968744 countsByYear W30189687442023 @default.
- W3018968744 crossrefType "journal-article" @default.
- W3018968744 hasAuthorship W3018968744A5055516322 @default.
- W3018968744 hasAuthorship W3018968744A5058574111 @default.
- W3018968744 hasAuthorship W3018968744A5064684161 @default.
- W3018968744 hasBestOaLocation W30189687441 @default.
- W3018968744 hasConcept C107365816 @default.
- W3018968744 hasConcept C121332964 @default.
- W3018968744 hasConcept C127413603 @default.
- W3018968744 hasConcept C154945302 @default.
- W3018968744 hasConcept C155032097 @default.
- W3018968744 hasConcept C159985019 @default.
- W3018968744 hasConcept C174598085 @default.
- W3018968744 hasConcept C192562407 @default.
- W3018968744 hasConcept C199360897 @default.
- W3018968744 hasConcept C24890656 @default.
- W3018968744 hasConcept C2777571299 @default.
- W3018968744 hasConcept C2779823094 @default.
- W3018968744 hasConcept C2779843651 @default.
- W3018968744 hasConcept C41008148 @default.
- W3018968744 hasConcept C50644808 @default.
- W3018968744 hasConcept C523214423 @default.
- W3018968744 hasConcept C71039073 @default.
- W3018968744 hasConcept C78519656 @default.
- W3018968744 hasConceptScore W3018968744C107365816 @default.
- W3018968744 hasConceptScore W3018968744C121332964 @default.
- W3018968744 hasConceptScore W3018968744C127413603 @default.
- W3018968744 hasConceptScore W3018968744C154945302 @default.
- W3018968744 hasConceptScore W3018968744C155032097 @default.
- W3018968744 hasConceptScore W3018968744C159985019 @default.
- W3018968744 hasConceptScore W3018968744C174598085 @default.
- W3018968744 hasConceptScore W3018968744C192562407 @default.
- W3018968744 hasConceptScore W3018968744C199360897 @default.
- W3018968744 hasConceptScore W3018968744C24890656 @default.
- W3018968744 hasConceptScore W3018968744C2777571299 @default.
- W3018968744 hasConceptScore W3018968744C2779823094 @default.
- W3018968744 hasConceptScore W3018968744C2779843651 @default.
- W3018968744 hasConceptScore W3018968744C41008148 @default.
- W3018968744 hasConceptScore W3018968744C50644808 @default.
- W3018968744 hasConceptScore W3018968744C523214423 @default.
- W3018968744 hasConceptScore W3018968744C71039073 @default.
- W3018968744 hasConceptScore W3018968744C78519656 @default.
- W3018968744 hasIssue "2" @default.
- W3018968744 hasLocation W30189687441 @default.
- W3018968744 hasLocation W30189687442 @default.
- W3018968744 hasOpenAccess W3018968744 @default.
- W3018968744 hasPrimaryLocation W30189687441 @default.
- W3018968744 hasRelatedWork W2039943527 @default.
- W3018968744 hasRelatedWork W2081294712 @default.
- W3018968744 hasRelatedWork W2285749922 @default.
- W3018968744 hasRelatedWork W2360286396 @default.
- W3018968744 hasRelatedWork W2726106977 @default.
- W3018968744 hasRelatedWork W2921298389 @default.
- W3018968744 hasRelatedWork W2938859126 @default.
- W3018968744 hasRelatedWork W3018968744 @default.
- W3018968744 hasRelatedWork W42226603 @default.
- W3018968744 hasRelatedWork W4229033530 @default.
- W3018968744 hasVolume "4" @default.
- W3018968744 isParatext "false" @default.
- W3018968744 isRetracted "false" @default.
- W3018968744 magId "3018968744" @default.
- W3018968744 workType "article" @default.