Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019103505> ?p ?o ?g. }
- W3019103505 endingPage "1578" @default.
- W3019103505 startingPage "1567" @default.
- W3019103505 abstract "Abstaract Objective In long-term electroencephalogram (EEG) signals, automated classification of epileptic seizures is desirable in diagnosing epilepsy patients, as it otherwise depends on visual inspection. To the best of the author’s knowledge, existing studies have validated their algorithms using cross-validation on the same database and less number of attempts have been made to extend their work on other databases to test the generalization capability of the developed algorithms. In this study, we present the algorithm for cross-database evaluation for classification of epileptic seizures using five EEG databases collected from different centers. The cross-database framework helps when sufficient epileptic seizures EEG data are not available to build automated seizure detection model. Methods Two features, namely successive decomposition index and matrix determinant were extracted at a segmentation length of 4 s (50% overlap). Then, adaptive median feature baseline correction (AM-FBC) was applied to overcome the inter-patient and inter-database variation in the feature distribution. The classification was performed using a support vector machine classifier with leave-one-database-out cross-validation. Different classification scenarios were considered using AM-FBC, smoothing of the train and test data, and post-processing of the classifier output. Results Simulation results revealed the highest area under the curve-sensitivity-specificity-false detections (per hour) of 1–1–1–0.15, 0.89–0.99–0.82–2.5, 0.99–0.73–1–1, 0.95–0.97–0.85–1.7, 0.99–0.99–0.92–1.1 using the Ramaiah Medical College and Hospitals, Children’s Hospital Boston-Massachusetts Institute of Technology, Temple University Hospital, Maastricht University Medical Centre, and University of Bonn databases respectively. Conclusions We observe that the AM-FBC plays a significant role in improving seizure detection results by overcoming inter-database variation of feature distribution. Significance To the best of the author’s knowledge, this is the first study reporting on the cross-database evaluation of classification of epileptic seizures and proven to be better generalization capability when evaluated using five databases and can contribute to accurate and robust detection of epileptic seizures in real-time." @default.
- W3019103505 created "2020-05-01" @default.
- W3019103505 creator A5039884011 @default.
- W3019103505 creator A5062092154 @default.
- W3019103505 creator A5068782707 @default.
- W3019103505 creator A5069740130 @default.
- W3019103505 creator A5071474523 @default.
- W3019103505 creator A5075646251 @default.
- W3019103505 creator A5076387267 @default.
- W3019103505 date "2020-07-01" @default.
- W3019103505 modified "2023-09-27" @default.
- W3019103505 title "Cross-database evaluation of EEG based epileptic seizures detection driven by adaptive median feature baseline correction" @default.
- W3019103505 cites W1818768602 @default.
- W3019103505 cites W1964875525 @default.
- W3019103505 cites W1974991504 @default.
- W3019103505 cites W1984164526 @default.
- W3019103505 cites W1989801867 @default.
- W3019103505 cites W2005791255 @default.
- W3019103505 cites W2024437316 @default.
- W3019103505 cites W2027927824 @default.
- W3019103505 cites W2035987281 @default.
- W3019103505 cites W2038421214 @default.
- W3019103505 cites W2042881272 @default.
- W3019103505 cites W2043596210 @default.
- W3019103505 cites W2052466231 @default.
- W3019103505 cites W2059638203 @default.
- W3019103505 cites W2063682302 @default.
- W3019103505 cites W2073223058 @default.
- W3019103505 cites W2077746856 @default.
- W3019103505 cites W2086406301 @default.
- W3019103505 cites W2087962094 @default.
- W3019103505 cites W2102244548 @default.
- W3019103505 cites W2107541057 @default.
- W3019103505 cites W2116681521 @default.
- W3019103505 cites W2119234283 @default.
- W3019103505 cites W2128396630 @default.
- W3019103505 cites W2128495200 @default.
- W3019103505 cites W2129309861 @default.
- W3019103505 cites W2146892036 @default.
- W3019103505 cites W2147272268 @default.
- W3019103505 cites W2320466601 @default.
- W3019103505 cites W2324694579 @default.
- W3019103505 cites W2345279893 @default.
- W3019103505 cites W2518115626 @default.
- W3019103505 cites W2518936540 @default.
- W3019103505 cites W2558173024 @default.
- W3019103505 cites W2558317411 @default.
- W3019103505 cites W2580617234 @default.
- W3019103505 cites W2608948620 @default.
- W3019103505 cites W2619813646 @default.
- W3019103505 cites W2739428828 @default.
- W3019103505 cites W2744480067 @default.
- W3019103505 cites W2751648704 @default.
- W3019103505 cites W2759483166 @default.
- W3019103505 cites W2810314999 @default.
- W3019103505 cites W2898734263 @default.
- W3019103505 cites W2901730235 @default.
- W3019103505 cites W2904559787 @default.
- W3019103505 cites W2917665218 @default.
- W3019103505 cites W2921691756 @default.
- W3019103505 cites W2946723940 @default.
- W3019103505 cites W2964267916 @default.
- W3019103505 cites W299288671 @default.
- W3019103505 cites W6229668 @default.
- W3019103505 doi "https://doi.org/10.1016/j.clinph.2020.03.033" @default.
- W3019103505 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32417698" @default.
- W3019103505 hasPublicationYear "2020" @default.
- W3019103505 type Work @default.
- W3019103505 sameAs 3019103505 @default.
- W3019103505 citedByCount "9" @default.
- W3019103505 countsByYear W30191035052021 @default.
- W3019103505 countsByYear W30191035052022 @default.
- W3019103505 countsByYear W30191035052023 @default.
- W3019103505 crossrefType "journal-article" @default.
- W3019103505 hasAuthorship W3019103505A5039884011 @default.
- W3019103505 hasAuthorship W3019103505A5062092154 @default.
- W3019103505 hasAuthorship W3019103505A5068782707 @default.
- W3019103505 hasAuthorship W3019103505A5069740130 @default.
- W3019103505 hasAuthorship W3019103505A5071474523 @default.
- W3019103505 hasAuthorship W3019103505A5075646251 @default.
- W3019103505 hasAuthorship W3019103505A5076387267 @default.
- W3019103505 hasBestOaLocation W30191035052 @default.
- W3019103505 hasConcept C118552586 @default.
- W3019103505 hasConcept C12267149 @default.
- W3019103505 hasConcept C138885662 @default.
- W3019103505 hasConcept C153180895 @default.
- W3019103505 hasConcept C154945302 @default.
- W3019103505 hasConcept C27181475 @default.
- W3019103505 hasConcept C2776401178 @default.
- W3019103505 hasConcept C2778186239 @default.
- W3019103505 hasConcept C2779334592 @default.
- W3019103505 hasConcept C31972630 @default.
- W3019103505 hasConcept C3770464 @default.
- W3019103505 hasConcept C41008148 @default.
- W3019103505 hasConcept C41895202 @default.
- W3019103505 hasConcept C522805319 @default.
- W3019103505 hasConcept C71924100 @default.
- W3019103505 hasConcept C77088390 @default.