Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019114689> ?p ?o ?g. }
- W3019114689 endingPage "180" @default.
- W3019114689 startingPage "173" @default.
- W3019114689 abstract "Gold immunochromatographic strip (GICS) is a widely used lateral flow immunoassay technique. A novel image segmentation method is developed in this paper for quantitative analysis of GICS based on the deep reinforcement learning (DRL), which can accurately distinguish the test line and the control line in the GICS images. The deep belief network (DBN) is employed in the deep Q network in our DRL algorithm. Meanwhile, the multi-factor learning curve is introduced in the DRL algorithm to dynamically adjust the capacity of the replay buffer and the sampling size, which leads to enhanced learning efficiency. It is worth mentioning that the states, actions, and rewards in the developed DRL algorithm are determined based on the characteristics of GICS images. Experiment results demonstrate the feasibility and reliability of the proposed DRL-based image segmentation method and show that the proposed new image segmentation method outperforms some existing image segmentation methods for quantitative analysis of GICS images." @default.
- W3019114689 created "2020-05-01" @default.
- W3019114689 creator A5017898593 @default.
- W3019114689 creator A5025693167 @default.
- W3019114689 creator A5042140265 @default.
- W3019114689 creator A5043634295 @default.
- W3019114689 creator A5048831651 @default.
- W3019114689 creator A5048898267 @default.
- W3019114689 creator A5080263475 @default.
- W3019114689 date "2021-02-01" @default.
- W3019114689 modified "2023-10-10" @default.
- W3019114689 title "Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip" @default.
- W3019114689 cites W1576373160 @default.
- W3019114689 cites W1986278262 @default.
- W3019114689 cites W1986695216 @default.
- W3019114689 cites W1993882792 @default.
- W3019114689 cites W2003051309 @default.
- W3019114689 cites W2044287799 @default.
- W3019114689 cites W2052152062 @default.
- W3019114689 cites W2084376682 @default.
- W3019114689 cites W2093852496 @default.
- W3019114689 cites W2114379455 @default.
- W3019114689 cites W2119717200 @default.
- W3019114689 cites W2128609649 @default.
- W3019114689 cites W2145339207 @default.
- W3019114689 cites W2158896954 @default.
- W3019114689 cites W2160815625 @default.
- W3019114689 cites W2171052652 @default.
- W3019114689 cites W2257979135 @default.
- W3019114689 cites W2344725271 @default.
- W3019114689 cites W2519119178 @default.
- W3019114689 cites W2592981353 @default.
- W3019114689 cites W2717393331 @default.
- W3019114689 cites W2888091285 @default.
- W3019114689 cites W2901501692 @default.
- W3019114689 cites W2907039237 @default.
- W3019114689 cites W2908142178 @default.
- W3019114689 cites W2912105568 @default.
- W3019114689 cites W2919037429 @default.
- W3019114689 cites W2948178128 @default.
- W3019114689 cites W2963317745 @default.
- W3019114689 cites W2963600139 @default.
- W3019114689 cites W2965901996 @default.
- W3019114689 cites W2970144961 @default.
- W3019114689 cites W2984128301 @default.
- W3019114689 cites W3008354675 @default.
- W3019114689 cites W3100789280 @default.
- W3019114689 cites W32403112 @default.
- W3019114689 doi "https://doi.org/10.1016/j.neucom.2020.04.001" @default.
- W3019114689 hasPublicationYear "2021" @default.
- W3019114689 type Work @default.
- W3019114689 sameAs 3019114689 @default.
- W3019114689 citedByCount "98" @default.
- W3019114689 countsByYear W30191146892020 @default.
- W3019114689 countsByYear W30191146892021 @default.
- W3019114689 countsByYear W30191146892022 @default.
- W3019114689 countsByYear W30191146892023 @default.
- W3019114689 crossrefType "journal-article" @default.
- W3019114689 hasAuthorship W3019114689A5017898593 @default.
- W3019114689 hasAuthorship W3019114689A5025693167 @default.
- W3019114689 hasAuthorship W3019114689A5042140265 @default.
- W3019114689 hasAuthorship W3019114689A5043634295 @default.
- W3019114689 hasAuthorship W3019114689A5048831651 @default.
- W3019114689 hasAuthorship W3019114689A5048898267 @default.
- W3019114689 hasAuthorship W3019114689A5080263475 @default.
- W3019114689 hasBestOaLocation W30191146892 @default.
- W3019114689 hasConcept C108583219 @default.
- W3019114689 hasConcept C115961682 @default.
- W3019114689 hasConcept C121332964 @default.
- W3019114689 hasConcept C124504099 @default.
- W3019114689 hasConcept C153180895 @default.
- W3019114689 hasConcept C154945302 @default.
- W3019114689 hasConcept C163258240 @default.
- W3019114689 hasConcept C198352243 @default.
- W3019114689 hasConcept C2524010 @default.
- W3019114689 hasConcept C31972630 @default.
- W3019114689 hasConcept C33923547 @default.
- W3019114689 hasConcept C41008148 @default.
- W3019114689 hasConcept C43214815 @default.
- W3019114689 hasConcept C62520636 @default.
- W3019114689 hasConcept C89600930 @default.
- W3019114689 hasConcept C97541855 @default.
- W3019114689 hasConceptScore W3019114689C108583219 @default.
- W3019114689 hasConceptScore W3019114689C115961682 @default.
- W3019114689 hasConceptScore W3019114689C121332964 @default.
- W3019114689 hasConceptScore W3019114689C124504099 @default.
- W3019114689 hasConceptScore W3019114689C153180895 @default.
- W3019114689 hasConceptScore W3019114689C154945302 @default.
- W3019114689 hasConceptScore W3019114689C163258240 @default.
- W3019114689 hasConceptScore W3019114689C198352243 @default.
- W3019114689 hasConceptScore W3019114689C2524010 @default.
- W3019114689 hasConceptScore W3019114689C31972630 @default.
- W3019114689 hasConceptScore W3019114689C33923547 @default.
- W3019114689 hasConceptScore W3019114689C41008148 @default.
- W3019114689 hasConceptScore W3019114689C43214815 @default.
- W3019114689 hasConceptScore W3019114689C62520636 @default.
- W3019114689 hasConceptScore W3019114689C89600930 @default.
- W3019114689 hasConceptScore W3019114689C97541855 @default.