Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019193937> ?p ?o ?g. }
- W3019193937 endingPage "816" @default.
- W3019193937 startingPage "809" @default.
- W3019193937 abstract "Machine learning (i.e., data mining, artificial intelligence, big data) has been increasingly applied in psychological science. Although some areas of research have benefited tremendously from a new set of statistical tools, most often in the use of biological or genetic variables, the hype has not been substantiated in more traditional areas of research. We argue that this phenomenon results from measurement errors that prevent machine-learning algorithms from accurately modeling nonlinear relationships, if indeed they exist. This shortcoming is showcased across a set of simulated examples, demonstrating that model selection between a machine-learning algorithm and regression depends on the measurement quality, regardless of sample size. We conclude with a set of recommendations and a discussion of ways to better integrate machine learning with statistics as traditionally practiced in psychological science." @default.
- W3019193937 created "2020-05-01" @default.
- W3019193937 creator A5060635481 @default.
- W3019193937 creator A5060956262 @default.
- W3019193937 date "2020-04-29" @default.
- W3019193937 modified "2023-10-16" @default.
- W3019193937 title "Machine Learning and Psychological Research: The Unexplored Effect of Measurement" @default.
- W3019193937 cites W1602160603 @default.
- W3019193937 cites W1678356000 @default.
- W3019193937 cites W2049311261 @default.
- W3019193937 cites W2108442198 @default.
- W3019193937 cites W2119672929 @default.
- W3019193937 cites W2123263696 @default.
- W3019193937 cites W2159401492 @default.
- W3019193937 cites W2284729062 @default.
- W3019193937 cites W2336766371 @default.
- W3019193937 cites W2560101698 @default.
- W3019193937 cites W2577537660 @default.
- W3019193937 cites W2589849966 @default.
- W3019193937 cites W2605512411 @default.
- W3019193937 cites W2611575597 @default.
- W3019193937 cites W2617619553 @default.
- W3019193937 cites W2622091505 @default.
- W3019193937 cites W2742736991 @default.
- W3019193937 cites W2766099988 @default.
- W3019193937 cites W2775608960 @default.
- W3019193937 cites W2787427645 @default.
- W3019193937 cites W2791907880 @default.
- W3019193937 cites W2803872820 @default.
- W3019193937 cites W2897357297 @default.
- W3019193937 cites W2897491575 @default.
- W3019193937 cites W2901460192 @default.
- W3019193937 cites W2904012811 @default.
- W3019193937 cites W2913997948 @default.
- W3019193937 cites W2914505217 @default.
- W3019193937 cites W3000506681 @default.
- W3019193937 cites W4248437541 @default.
- W3019193937 cites W4252529058 @default.
- W3019193937 doi "https://doi.org/10.1177/1745691620902467" @default.
- W3019193937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32348703" @default.
- W3019193937 hasPublicationYear "2020" @default.
- W3019193937 type Work @default.
- W3019193937 sameAs 3019193937 @default.
- W3019193937 citedByCount "59" @default.
- W3019193937 countsByYear W30191939372020 @default.
- W3019193937 countsByYear W30191939372021 @default.
- W3019193937 countsByYear W30191939372022 @default.
- W3019193937 countsByYear W30191939372023 @default.
- W3019193937 crossrefType "journal-article" @default.
- W3019193937 hasAuthorship W3019193937A5060635481 @default.
- W3019193937 hasAuthorship W3019193937A5060956262 @default.
- W3019193937 hasBestOaLocation W30191939372 @default.
- W3019193937 hasConcept C111472728 @default.
- W3019193937 hasConcept C11171543 @default.
- W3019193937 hasConcept C119857082 @default.
- W3019193937 hasConcept C124101348 @default.
- W3019193937 hasConcept C138885662 @default.
- W3019193937 hasConcept C154945302 @default.
- W3019193937 hasConcept C15744967 @default.
- W3019193937 hasConcept C177264268 @default.
- W3019193937 hasConcept C185592680 @default.
- W3019193937 hasConcept C188255311 @default.
- W3019193937 hasConcept C198531522 @default.
- W3019193937 hasConcept C199360897 @default.
- W3019193937 hasConcept C2522767166 @default.
- W3019193937 hasConcept C2779530757 @default.
- W3019193937 hasConcept C2992048920 @default.
- W3019193937 hasConcept C41008148 @default.
- W3019193937 hasConcept C43617362 @default.
- W3019193937 hasConcept C75684735 @default.
- W3019193937 hasConcept C77805123 @default.
- W3019193937 hasConcept C81917197 @default.
- W3019193937 hasConcept C83546350 @default.
- W3019193937 hasConceptScore W3019193937C111472728 @default.
- W3019193937 hasConceptScore W3019193937C11171543 @default.
- W3019193937 hasConceptScore W3019193937C119857082 @default.
- W3019193937 hasConceptScore W3019193937C124101348 @default.
- W3019193937 hasConceptScore W3019193937C138885662 @default.
- W3019193937 hasConceptScore W3019193937C154945302 @default.
- W3019193937 hasConceptScore W3019193937C15744967 @default.
- W3019193937 hasConceptScore W3019193937C177264268 @default.
- W3019193937 hasConceptScore W3019193937C185592680 @default.
- W3019193937 hasConceptScore W3019193937C188255311 @default.
- W3019193937 hasConceptScore W3019193937C198531522 @default.
- W3019193937 hasConceptScore W3019193937C199360897 @default.
- W3019193937 hasConceptScore W3019193937C2522767166 @default.
- W3019193937 hasConceptScore W3019193937C2779530757 @default.
- W3019193937 hasConceptScore W3019193937C2992048920 @default.
- W3019193937 hasConceptScore W3019193937C41008148 @default.
- W3019193937 hasConceptScore W3019193937C43617362 @default.
- W3019193937 hasConceptScore W3019193937C75684735 @default.
- W3019193937 hasConceptScore W3019193937C77805123 @default.
- W3019193937 hasConceptScore W3019193937C81917197 @default.
- W3019193937 hasConceptScore W3019193937C83546350 @default.
- W3019193937 hasIssue "3" @default.
- W3019193937 hasLocation W30191939371 @default.
- W3019193937 hasLocation W30191939372 @default.
- W3019193937 hasLocation W30191939373 @default.