Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019334562> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3019334562 endingPage "2929" @default.
- W3019334562 startingPage "2929" @default.
- W3019334562 abstract "Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%." @default.
- W3019334562 created "2020-05-01" @default.
- W3019334562 creator A5033406938 @default.
- W3019334562 creator A5087976149 @default.
- W3019334562 date "2020-04-23" @default.
- W3019334562 modified "2023-10-14" @default.
- W3019334562 title "A Novel Architecture to Classify Histopathology Images Using Convolutional Neural Networks" @default.
- W3019334562 cites W1965451568 @default.
- W3019334562 cites W1995562189 @default.
- W3019334562 cites W2015725271 @default.
- W3019334562 cites W2112796928 @default.
- W3019334562 cites W2117539524 @default.
- W3019334562 cites W2147800946 @default.
- W3019334562 cites W2312404985 @default.
- W3019334562 cites W2618530766 @default.
- W3019334562 cites W2726204845 @default.
- W3019334562 cites W2772723798 @default.
- W3019334562 cites W2890741060 @default.
- W3019334562 cites W2947825023 @default.
- W3019334562 cites W2954996726 @default.
- W3019334562 cites W2999417355 @default.
- W3019334562 doi "https://doi.org/10.3390/app10082929" @default.
- W3019334562 hasPublicationYear "2020" @default.
- W3019334562 type Work @default.
- W3019334562 sameAs 3019334562 @default.
- W3019334562 citedByCount "6" @default.
- W3019334562 countsByYear W30193345622020 @default.
- W3019334562 countsByYear W30193345622022 @default.
- W3019334562 countsByYear W30193345622023 @default.
- W3019334562 crossrefType "journal-article" @default.
- W3019334562 hasAuthorship W3019334562A5033406938 @default.
- W3019334562 hasAuthorship W3019334562A5087976149 @default.
- W3019334562 hasBestOaLocation W30193345621 @default.
- W3019334562 hasConcept C108583219 @default.
- W3019334562 hasConcept C115961682 @default.
- W3019334562 hasConcept C142724271 @default.
- W3019334562 hasConcept C153180895 @default.
- W3019334562 hasConcept C154945302 @default.
- W3019334562 hasConcept C41008148 @default.
- W3019334562 hasConcept C45347329 @default.
- W3019334562 hasConcept C50644808 @default.
- W3019334562 hasConcept C544855455 @default.
- W3019334562 hasConcept C71924100 @default.
- W3019334562 hasConcept C75294576 @default.
- W3019334562 hasConcept C81363708 @default.
- W3019334562 hasConceptScore W3019334562C108583219 @default.
- W3019334562 hasConceptScore W3019334562C115961682 @default.
- W3019334562 hasConceptScore W3019334562C142724271 @default.
- W3019334562 hasConceptScore W3019334562C153180895 @default.
- W3019334562 hasConceptScore W3019334562C154945302 @default.
- W3019334562 hasConceptScore W3019334562C41008148 @default.
- W3019334562 hasConceptScore W3019334562C45347329 @default.
- W3019334562 hasConceptScore W3019334562C50644808 @default.
- W3019334562 hasConceptScore W3019334562C544855455 @default.
- W3019334562 hasConceptScore W3019334562C71924100 @default.
- W3019334562 hasConceptScore W3019334562C75294576 @default.
- W3019334562 hasConceptScore W3019334562C81363708 @default.
- W3019334562 hasFunder F4320322554 @default.
- W3019334562 hasIssue "8" @default.
- W3019334562 hasLocation W30193345621 @default.
- W3019334562 hasLocation W30193345622 @default.
- W3019334562 hasLocation W30193345623 @default.
- W3019334562 hasLocation W30193345624 @default.
- W3019334562 hasLocation W30193345625 @default.
- W3019334562 hasLocation W30193345626 @default.
- W3019334562 hasOpenAccess W3019334562 @default.
- W3019334562 hasPrimaryLocation W30193345621 @default.
- W3019334562 hasRelatedWork W2084220915 @default.
- W3019334562 hasRelatedWork W2738221750 @default.
- W3019334562 hasRelatedWork W2766604260 @default.
- W3019334562 hasRelatedWork W2767708349 @default.
- W3019334562 hasRelatedWork W2986507176 @default.
- W3019334562 hasRelatedWork W3129634582 @default.
- W3019334562 hasRelatedWork W3156786002 @default.
- W3019334562 hasRelatedWork W3189091156 @default.
- W3019334562 hasRelatedWork W4312417841 @default.
- W3019334562 hasRelatedWork W564581980 @default.
- W3019334562 hasVolume "10" @default.
- W3019334562 isParatext "false" @default.
- W3019334562 isRetracted "false" @default.
- W3019334562 magId "3019334562" @default.
- W3019334562 workType "article" @default.