Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019359868> ?p ?o ?g. }
- W3019359868 endingPage "756" @default.
- W3019359868 startingPage "740" @default.
- W3019359868 abstract "Aim and Objective: Near Infrared (NIR) spectroscopy data are featured by few dozen to many thousands of samples and highly correlated variables. Quantitative analysis of such data usually requires a combination of analytical methods with variable selection or screening methods. Commonly-used variable screening methods fail to recover the true model when (i) some of the variables are highly correlated, and (ii) the sample size is less than the number of relevant variables. In these cases, Partial Least Squares (PLS) regression based approaches can be useful alternatives. Materials and Methods : In this research, a fast variable screening strategy, namely the preconditioned screening for ridge partial least squares regression (PSRPLS), is proposed for modelling NIR spectroscopy data with high-dimensional and highly correlated covariates. Under rather mild assumptions, we prove that using Puffer transformation, the proposed approach successfully transforms the problem of variable screening with highly correlated predictor variables to that of weakly correlated covariates with less extra computational effort. Results: We show that our proposed method leads to theoretically consistent model selection results. Four simulation studies and two real examples are then analyzed to illustrate the effectiveness of the proposed approach. Conclusion: By introducing Puffer transformation, high correlation problem can be mitigated using the PSRPLS procedure we construct. By employing RPLS regression to our approach, it can be made more simple and computational efficient to cope with the situation where model size is larger than the sample size while maintaining a high precision prediction." @default.
- W3019359868 created "2020-05-01" @default.
- W3019359868 creator A5002533456 @default.
- W3019359868 creator A5069557245 @default.
- W3019359868 creator A5071132456 @default.
- W3019359868 creator A5080576150 @default.
- W3019359868 date "2020-11-02" @default.
- W3019359868 modified "2023-09-23" @default.
- W3019359868 title "Variable Screening for Near Infrared (NIR) Spectroscopy Data Based on Ridge Partial Least Squares Regression" @default.
- W3019359868 cites W1580111774 @default.
- W3019359868 cites W1849963216 @default.
- W3019359868 cites W1965786603 @default.
- W3019359868 cites W1966089218 @default.
- W3019359868 cites W1966626540 @default.
- W3019359868 cites W1967137838 @default.
- W3019359868 cites W1970200460 @default.
- W3019359868 cites W1973356291 @default.
- W3019359868 cites W1976416877 @default.
- W3019359868 cites W1986754794 @default.
- W3019359868 cites W1996195892 @default.
- W3019359868 cites W2001179019 @default.
- W3019359868 cites W2003991488 @default.
- W3019359868 cites W2008929650 @default.
- W3019359868 cites W2012309718 @default.
- W3019359868 cites W2018338598 @default.
- W3019359868 cites W2018512902 @default.
- W3019359868 cites W2027515083 @default.
- W3019359868 cites W2031749182 @default.
- W3019359868 cites W2035115427 @default.
- W3019359868 cites W2035833657 @default.
- W3019359868 cites W2041602210 @default.
- W3019359868 cites W2060910525 @default.
- W3019359868 cites W2061593315 @default.
- W3019359868 cites W2070839470 @default.
- W3019359868 cites W2074410978 @default.
- W3019359868 cites W2084169316 @default.
- W3019359868 cites W2098502158 @default.
- W3019359868 cites W2098722265 @default.
- W3019359868 cites W2106489491 @default.
- W3019359868 cites W2112434835 @default.
- W3019359868 cites W2119387367 @default.
- W3019359868 cites W2134874509 @default.
- W3019359868 cites W2136659330 @default.
- W3019359868 cites W2140196823 @default.
- W3019359868 cites W2141635270 @default.
- W3019359868 cites W2145277930 @default.
- W3019359868 cites W2149877551 @default.
- W3019359868 cites W2154560360 @default.
- W3019359868 cites W2164086668 @default.
- W3019359868 cites W2202358831 @default.
- W3019359868 cites W2317235261 @default.
- W3019359868 cites W2737321324 @default.
- W3019359868 cites W2804171184 @default.
- W3019359868 cites W2908881949 @default.
- W3019359868 cites W2911863681 @default.
- W3019359868 cites W3000332379 @default.
- W3019359868 cites W3102266093 @default.
- W3019359868 cites W4302374119 @default.
- W3019359868 cites W8105021 @default.
- W3019359868 doi "https://doi.org/10.2174/1386207323666200428114823" @default.
- W3019359868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32342803" @default.
- W3019359868 hasPublicationYear "2020" @default.
- W3019359868 type Work @default.
- W3019359868 sameAs 3019359868 @default.
- W3019359868 citedByCount "4" @default.
- W3019359868 countsByYear W30193598682022 @default.
- W3019359868 countsByYear W30193598682023 @default.
- W3019359868 crossrefType "journal-article" @default.
- W3019359868 hasAuthorship W3019359868A5002533456 @default.
- W3019359868 hasAuthorship W3019359868A5069557245 @default.
- W3019359868 hasAuthorship W3019359868A5071132456 @default.
- W3019359868 hasAuthorship W3019359868A5080576150 @default.
- W3019359868 hasConcept C104317684 @default.
- W3019359868 hasConcept C105795698 @default.
- W3019359868 hasConcept C11413529 @default.
- W3019359868 hasConcept C119043178 @default.
- W3019359868 hasConcept C129848803 @default.
- W3019359868 hasConcept C134306372 @default.
- W3019359868 hasConcept C148483581 @default.
- W3019359868 hasConcept C151730666 @default.
- W3019359868 hasConcept C152877465 @default.
- W3019359868 hasConcept C154945302 @default.
- W3019359868 hasConcept C182365436 @default.
- W3019359868 hasConcept C185429906 @default.
- W3019359868 hasConcept C185592680 @default.
- W3019359868 hasConcept C188649462 @default.
- W3019359868 hasConcept C204241405 @default.
- W3019359868 hasConcept C22354355 @default.
- W3019359868 hasConcept C27574286 @default.
- W3019359868 hasConcept C32277403 @default.
- W3019359868 hasConcept C33923547 @default.
- W3019359868 hasConcept C41008148 @default.
- W3019359868 hasConcept C48921125 @default.
- W3019359868 hasConcept C55493867 @default.
- W3019359868 hasConcept C83546350 @default.
- W3019359868 hasConcept C86803240 @default.
- W3019359868 hasConceptScore W3019359868C104317684 @default.
- W3019359868 hasConceptScore W3019359868C105795698 @default.