Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019382938> ?p ?o ?g. }
- W3019382938 endingPage "2575" @default.
- W3019382938 startingPage "2560" @default.
- W3019382938 abstract "Human bodies exhibit various shapes for different identities or poses, but the body shape has certain similarities in structure and thus can be embedded in a low-dimensional space. This article presents an autoencoder-like network architecture to learn disentangled shape and pose embedding specifically for the 3D human body. This is inspired by recent progress of deformation-based latent representation learning. To improve the reconstruction accuracy, we propose a hierarchical reconstruction pipeline for the disentangling process and construct a large dataset of human body models with consistent connectivity for the learning of the neural network. Our learned embedding can not only achieve superior reconstruction accuracy but also provide great flexibility in 3D human body generation via interpolation, bilinear interpolation, and latent space sampling. The results from extensive experiments demonstrate the powerfulness of our learned 3D human body embedding in various applications." @default.
- W3019382938 created "2020-05-01" @default.
- W3019382938 creator A5013029508 @default.
- W3019382938 creator A5017901486 @default.
- W3019382938 creator A5039953512 @default.
- W3019382938 creator A5073998375 @default.
- W3019382938 date "2020-08-01" @default.
- W3019382938 modified "2023-09-26" @default.
- W3019382938 title "Disentangled Human Body Embedding Based on Deep Hierarchical Neural Network" @default.
- W3019382938 cites W1558985453 @default.
- W3019382938 cites W1562699689 @default.
- W3019382938 cites W1936186068 @default.
- W3019382938 cites W1944448249 @default.
- W3019382938 cites W1967554269 @default.
- W3019382938 cites W1985907520 @default.
- W3019382938 cites W1989191365 @default.
- W3019382938 cites W1992475172 @default.
- W3019382938 cites W2026861142 @default.
- W3019382938 cites W2032618685 @default.
- W3019382938 cites W2049462432 @default.
- W3019382938 cites W2075834168 @default.
- W3019382938 cites W2101032778 @default.
- W3019382938 cites W2109247271 @default.
- W3019382938 cites W2122633688 @default.
- W3019382938 cites W2134389879 @default.
- W3019382938 cites W2135533529 @default.
- W3019382938 cites W2137044594 @default.
- W3019382938 cites W2158179171 @default.
- W3019382938 cites W2400958808 @default.
- W3019382938 cites W2419474014 @default.
- W3019382938 cites W2483862638 @default.
- W3019382938 cites W2592071824 @default.
- W3019382938 cites W2746892480 @default.
- W3019382938 cites W2768683308 @default.
- W3019382938 cites W2793768642 @default.
- W3019382938 cites W2799116135 @default.
- W3019382938 cites W2883221003 @default.
- W3019382938 cites W2902035653 @default.
- W3019382938 cites W2917887692 @default.
- W3019382938 cites W2952831099 @default.
- W3019382938 cites W2962754033 @default.
- W3019382938 cites W2962928839 @default.
- W3019382938 cites W2962934458 @default.
- W3019382938 cites W2963197375 @default.
- W3019382938 cites W2963242400 @default.
- W3019382938 cites W2963288150 @default.
- W3019382938 cites W2963515833 @default.
- W3019382938 cites W2963732450 @default.
- W3019382938 cites W2963873475 @default.
- W3019382938 cites W2963976831 @default.
- W3019382938 cites W2963995996 @default.
- W3019382938 cites W2964218552 @default.
- W3019382938 cites W2964219767 @default.
- W3019382938 cites W2971856312 @default.
- W3019382938 cites W2973965592 @default.
- W3019382938 cites W2978956737 @default.
- W3019382938 cites W3006223838 @default.
- W3019382938 cites W3124139043 @default.
- W3019382938 cites W4238381132 @default.
- W3019382938 cites W4255698256 @default.
- W3019382938 doi "https://doi.org/10.1109/tvcg.2020.2988476" @default.
- W3019382938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32324557" @default.
- W3019382938 hasPublicationYear "2020" @default.
- W3019382938 type Work @default.
- W3019382938 sameAs 3019382938 @default.
- W3019382938 citedByCount "24" @default.
- W3019382938 countsByYear W30193829382020 @default.
- W3019382938 countsByYear W30193829382021 @default.
- W3019382938 countsByYear W30193829382022 @default.
- W3019382938 countsByYear W30193829382023 @default.
- W3019382938 crossrefType "journal-article" @default.
- W3019382938 hasAuthorship W3019382938A5013029508 @default.
- W3019382938 hasAuthorship W3019382938A5017901486 @default.
- W3019382938 hasAuthorship W3019382938A5039953512 @default.
- W3019382938 hasAuthorship W3019382938A5073998375 @default.
- W3019382938 hasBestOaLocation W30193829382 @default.
- W3019382938 hasConcept C101738243 @default.
- W3019382938 hasConcept C104114177 @default.
- W3019382938 hasConcept C108583219 @default.
- W3019382938 hasConcept C119857082 @default.
- W3019382938 hasConcept C137800194 @default.
- W3019382938 hasConcept C153180895 @default.
- W3019382938 hasConcept C154945302 @default.
- W3019382938 hasConcept C17744445 @default.
- W3019382938 hasConcept C199360897 @default.
- W3019382938 hasConcept C199539241 @default.
- W3019382938 hasConcept C2776359362 @default.
- W3019382938 hasConcept C41008148 @default.
- W3019382938 hasConcept C41608201 @default.
- W3019382938 hasConcept C43521106 @default.
- W3019382938 hasConcept C50644808 @default.
- W3019382938 hasConcept C94625758 @default.
- W3019382938 hasConceptScore W3019382938C101738243 @default.
- W3019382938 hasConceptScore W3019382938C104114177 @default.
- W3019382938 hasConceptScore W3019382938C108583219 @default.
- W3019382938 hasConceptScore W3019382938C119857082 @default.
- W3019382938 hasConceptScore W3019382938C137800194 @default.
- W3019382938 hasConceptScore W3019382938C153180895 @default.