Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019384958> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3019384958 abstract "With the ever increasing demand for screening millions of prospective novel coronavirus or COVID-19 cases, and due to the emergence of high false negatives in the commonly used PCR tests, the necessity for probing an alternative simple screening mechanism of COVID-19 using radiological images (like chest X-Rays) assumes importance. In this scenario, machine learning (ML) and deep learning (DL) offer fast, automated, effective strategies to detect abnormalities and extract key features of the altered lung parenchyma, which may be related to specific signatures of the COVID-19 virus. However, the available COVID-19 datasets are inadequate to train deep neural networks. Therefore, we propose a new concept called domain extension transfer learning (DETL). We employ DETL, with pre-trained deep convolutional neural network, on a related large chest X-Ray dataset that is tuned for classifying between four classes textit{viz.} $normal$, $pneumonia$, $other_disease$, and $Covid-19$. A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19. The initial results show promise, with the possibility of replication on bigger and more diverse data sets. The overall accuracy was measured as $90.13% pm 0.14$. In order to get an idea about the COVID-19 detection transparency, we employed the concept of Gradient Class Activation Map (Grad-CAM) for detecting the regions where the model paid more attention during the classification. This was found to strongly correlate with clinical findings, as validated by experts." @default.
- W3019384958 created "2020-05-01" @default.
- W3019384958 creator A5020684706 @default.
- W3019384958 creator A5028922022 @default.
- W3019384958 creator A5074172386 @default.
- W3019384958 date "2020-04-22" @default.
- W3019384958 modified "2023-09-27" @default.
- W3019384958 title "Deep Learning for Screening COVID-19 using Chest X-Ray Images" @default.
- W3019384958 cites W1686810756 @default.
- W3019384958 cites W2163605009 @default.
- W3019384958 cites W2174661749 @default.
- W3019384958 cites W2194775991 @default.
- W3019384958 cites W2310992461 @default.
- W3019384958 cites W2901394229 @default.
- W3019384958 cites W2919115771 @default.
- W3019384958 cites W2962858109 @default.
- W3019384958 cites W3011048075 @default.
- W3019384958 cites W3011810856 @default.
- W3019384958 cites W3013564598 @default.
- W3019384958 cites W3015596934 @default.
- W3019384958 cites W3020816140 @default.
- W3019384958 cites W3101156210 @default.
- W3019384958 cites W3105081694 @default.
- W3019384958 cites W3114166611 @default.
- W3019384958 hasPublicationYear "2020" @default.
- W3019384958 type Work @default.
- W3019384958 sameAs 3019384958 @default.
- W3019384958 citedByCount "4" @default.
- W3019384958 countsByYear W30193849582020 @default.
- W3019384958 crossrefType "posted-content" @default.
- W3019384958 hasAuthorship W3019384958A5020684706 @default.
- W3019384958 hasAuthorship W3019384958A5028922022 @default.
- W3019384958 hasAuthorship W3019384958A5074172386 @default.
- W3019384958 hasConcept C108583219 @default.
- W3019384958 hasConcept C119857082 @default.
- W3019384958 hasConcept C142724271 @default.
- W3019384958 hasConcept C150899416 @default.
- W3019384958 hasConcept C153180895 @default.
- W3019384958 hasConcept C154945302 @default.
- W3019384958 hasConcept C2779134260 @default.
- W3019384958 hasConcept C3007834351 @default.
- W3019384958 hasConcept C3008058167 @default.
- W3019384958 hasConcept C41008148 @default.
- W3019384958 hasConcept C50644808 @default.
- W3019384958 hasConcept C524204448 @default.
- W3019384958 hasConcept C71924100 @default.
- W3019384958 hasConcept C81363708 @default.
- W3019384958 hasConceptScore W3019384958C108583219 @default.
- W3019384958 hasConceptScore W3019384958C119857082 @default.
- W3019384958 hasConceptScore W3019384958C142724271 @default.
- W3019384958 hasConceptScore W3019384958C150899416 @default.
- W3019384958 hasConceptScore W3019384958C153180895 @default.
- W3019384958 hasConceptScore W3019384958C154945302 @default.
- W3019384958 hasConceptScore W3019384958C2779134260 @default.
- W3019384958 hasConceptScore W3019384958C3007834351 @default.
- W3019384958 hasConceptScore W3019384958C3008058167 @default.
- W3019384958 hasConceptScore W3019384958C41008148 @default.
- W3019384958 hasConceptScore W3019384958C50644808 @default.
- W3019384958 hasConceptScore W3019384958C524204448 @default.
- W3019384958 hasConceptScore W3019384958C71924100 @default.
- W3019384958 hasConceptScore W3019384958C81363708 @default.
- W3019384958 hasLocation W30193849581 @default.
- W3019384958 hasOpenAccess W3019384958 @default.
- W3019384958 hasPrimaryLocation W30193849581 @default.
- W3019384958 hasRelatedWork W3014537881 @default.
- W3019384958 hasRelatedWork W3017364693 @default.
- W3019384958 hasRelatedWork W3020816140 @default.
- W3019384958 hasRelatedWork W3043255036 @default.
- W3019384958 hasRelatedWork W3081162052 @default.
- W3019384958 hasRelatedWork W3082685535 @default.
- W3019384958 hasRelatedWork W3089000511 @default.
- W3019384958 hasRelatedWork W3094764353 @default.
- W3019384958 hasRelatedWork W3110116114 @default.
- W3019384958 hasRelatedWork W3115255683 @default.
- W3019384958 hasRelatedWork W3116326107 @default.
- W3019384958 hasRelatedWork W3119875393 @default.
- W3019384958 hasRelatedWork W3124508579 @default.
- W3019384958 hasRelatedWork W3126581477 @default.
- W3019384958 hasRelatedWork W3133262691 @default.
- W3019384958 hasRelatedWork W3157302753 @default.
- W3019384958 hasRelatedWork W3158908738 @default.
- W3019384958 hasRelatedWork W3161014795 @default.
- W3019384958 hasRelatedWork W3168680802 @default.
- W3019384958 hasRelatedWork W3184377958 @default.
- W3019384958 isParatext "false" @default.
- W3019384958 isRetracted "false" @default.
- W3019384958 magId "3019384958" @default.
- W3019384958 workType "article" @default.