Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019447003> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3019447003 abstract "The task of predicting future stock values has always been one that is heavily desired albeit very difficult. This difficulty arises from stocks with non-stationary behavior, and without any explicit form. Hence, predictions are best made through analysis of financial stock data. To handle big data sets, current convention involves the use of the Moving Average. However, by utilizing the Wavelet Transform in place of the Moving Average to denoise stock signals, financial data can be smoothened and more accurately broken down. This newly transformed, denoised, and more stable stock data can be followed up by non-parametric statistical methods, such as Support Vector Regression (SVR) and Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM) networks to predict future stock prices. Through the implementation of these methods, one is left with a more accurate stock forecast, and in turn, increased profits." @default.
- W3019447003 created "2020-05-01" @default.
- W3019447003 creator A5038406557 @default.
- W3019447003 creator A5079072497 @default.
- W3019447003 creator A5089011736 @default.
- W3019447003 date "2019-09-01" @default.
- W3019447003 modified "2023-09-24" @default.
- W3019447003 title "Stock Forecasting Using M-Band Wavelet-Based SVR and RNN-LSTMs Models" @default.
- W3019447003 cites W1483403292 @default.
- W3019447003 cites W1563088657 @default.
- W3019447003 cites W1964357740 @default.
- W3019447003 cites W1986078433 @default.
- W3019447003 cites W1995319408 @default.
- W3019447003 cites W2001751530 @default.
- W3019447003 cites W2005424446 @default.
- W3019447003 cites W2008924797 @default.
- W3019447003 cites W2011227258 @default.
- W3019447003 cites W2012079387 @default.
- W3019447003 cites W2022006693 @default.
- W3019447003 cites W2024804972 @default.
- W3019447003 cites W2063606086 @default.
- W3019447003 cites W2064675550 @default.
- W3019447003 cites W2086694651 @default.
- W3019447003 cites W2105993120 @default.
- W3019447003 cites W2120013509 @default.
- W3019447003 cites W2136848157 @default.
- W3019447003 cites W2141703670 @default.
- W3019447003 cites W2156909104 @default.
- W3019447003 cites W2163621334 @default.
- W3019447003 cites W2166536772 @default.
- W3019447003 cites W2172073485 @default.
- W3019447003 cites W3124181023 @default.
- W3019447003 cites W4236047370 @default.
- W3019447003 doi "https://doi.org/10.1109/iciscae48440.2019.221625" @default.
- W3019447003 hasPublicationYear "2019" @default.
- W3019447003 type Work @default.
- W3019447003 sameAs 3019447003 @default.
- W3019447003 citedByCount "1" @default.
- W3019447003 countsByYear W30194470032022 @default.
- W3019447003 crossrefType "proceedings-article" @default.
- W3019447003 hasAuthorship W3019447003A5038406557 @default.
- W3019447003 hasAuthorship W3019447003A5079072497 @default.
- W3019447003 hasAuthorship W3019447003A5089011736 @default.
- W3019447003 hasBestOaLocation W30194470032 @default.
- W3019447003 hasConcept C119857082 @default.
- W3019447003 hasConcept C127413603 @default.
- W3019447003 hasConcept C147168706 @default.
- W3019447003 hasConcept C153180895 @default.
- W3019447003 hasConcept C154945302 @default.
- W3019447003 hasConcept C196216189 @default.
- W3019447003 hasConcept C204036174 @default.
- W3019447003 hasConcept C28490314 @default.
- W3019447003 hasConcept C41008148 @default.
- W3019447003 hasConcept C47432892 @default.
- W3019447003 hasConcept C50644808 @default.
- W3019447003 hasConcept C78519656 @default.
- W3019447003 hasConceptScore W3019447003C119857082 @default.
- W3019447003 hasConceptScore W3019447003C127413603 @default.
- W3019447003 hasConceptScore W3019447003C147168706 @default.
- W3019447003 hasConceptScore W3019447003C153180895 @default.
- W3019447003 hasConceptScore W3019447003C154945302 @default.
- W3019447003 hasConceptScore W3019447003C196216189 @default.
- W3019447003 hasConceptScore W3019447003C204036174 @default.
- W3019447003 hasConceptScore W3019447003C28490314 @default.
- W3019447003 hasConceptScore W3019447003C41008148 @default.
- W3019447003 hasConceptScore W3019447003C47432892 @default.
- W3019447003 hasConceptScore W3019447003C50644808 @default.
- W3019447003 hasConceptScore W3019447003C78519656 @default.
- W3019447003 hasLocation W30194470031 @default.
- W3019447003 hasLocation W30194470032 @default.
- W3019447003 hasOpenAccess W3019447003 @default.
- W3019447003 hasPrimaryLocation W30194470031 @default.
- W3019447003 hasRelatedWork W1577789985 @default.
- W3019447003 hasRelatedWork W1982375519 @default.
- W3019447003 hasRelatedWork W2037328875 @default.
- W3019447003 hasRelatedWork W2148116311 @default.
- W3019447003 hasRelatedWork W2163073107 @default.
- W3019447003 hasRelatedWork W2541950815 @default.
- W3019447003 hasRelatedWork W2545095649 @default.
- W3019447003 hasRelatedWork W2942471066 @default.
- W3019447003 hasRelatedWork W3003836766 @default.
- W3019447003 hasRelatedWork W810659553 @default.
- W3019447003 isParatext "false" @default.
- W3019447003 isRetracted "false" @default.
- W3019447003 magId "3019447003" @default.
- W3019447003 workType "article" @default.