Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019534669> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3019534669 abstract "The Wide& Deep learning which combinesthe wide component and deep component shown good performance in recommendation systems. However, the Wide & Deep learning lack of a research and experimental result on regression analysis. In this paper, we experiment the Wide & Deep learning on regression analysis and we also present new Wide & Deep structure named WDSI which have better performance than the existing Wide & Deep learning in regression analysis. The wide component and deep component of the WDSI sharing a same input data. This strategy can reduce burden on a hand-crafted variables and it have better performance than the Wide & Deep learning in regression analysis. We also show that the WDSI outperforms a traditional machine-learning and deep-learning models in regression analysis." @default.
- W3019534669 created "2020-05-01" @default.
- W3019534669 creator A5000393612 @default.
- W3019534669 creator A5030814682 @default.
- W3019534669 creator A5060469373 @default.
- W3019534669 date "2020-02-01" @default.
- W3019534669 modified "2023-09-24" @default.
- W3019534669 title "A Wide & Deep Learning Sharing Input Data for Regression Analysis" @default.
- W3019534669 cites W2047028564 @default.
- W3019534669 cites W2135046866 @default.
- W3019534669 cites W2799042347 @default.
- W3019534669 cites W2963959597 @default.
- W3019534669 doi "https://doi.org/10.1109/bigcomp48618.2020.0-108" @default.
- W3019534669 hasPublicationYear "2020" @default.
- W3019534669 type Work @default.
- W3019534669 sameAs 3019534669 @default.
- W3019534669 citedByCount "7" @default.
- W3019534669 countsByYear W30195346692020 @default.
- W3019534669 countsByYear W30195346692021 @default.
- W3019534669 countsByYear W30195346692022 @default.
- W3019534669 countsByYear W30195346692023 @default.
- W3019534669 crossrefType "proceedings-article" @default.
- W3019534669 hasAuthorship W3019534669A5000393612 @default.
- W3019534669 hasAuthorship W3019534669A5030814682 @default.
- W3019534669 hasAuthorship W3019534669A5060469373 @default.
- W3019534669 hasConcept C105795698 @default.
- W3019534669 hasConcept C108583219 @default.
- W3019534669 hasConcept C119857082 @default.
- W3019534669 hasConcept C152877465 @default.
- W3019534669 hasConcept C154945302 @default.
- W3019534669 hasConcept C33923547 @default.
- W3019534669 hasConcept C41008148 @default.
- W3019534669 hasConcept C83546350 @default.
- W3019534669 hasConceptScore W3019534669C105795698 @default.
- W3019534669 hasConceptScore W3019534669C108583219 @default.
- W3019534669 hasConceptScore W3019534669C119857082 @default.
- W3019534669 hasConceptScore W3019534669C152877465 @default.
- W3019534669 hasConceptScore W3019534669C154945302 @default.
- W3019534669 hasConceptScore W3019534669C33923547 @default.
- W3019534669 hasConceptScore W3019534669C41008148 @default.
- W3019534669 hasConceptScore W3019534669C83546350 @default.
- W3019534669 hasLocation W30195346691 @default.
- W3019534669 hasOpenAccess W3019534669 @default.
- W3019534669 hasPrimaryLocation W30195346691 @default.
- W3019534669 hasRelatedWork W2922457425 @default.
- W3019534669 hasRelatedWork W3014300295 @default.
- W3019534669 hasRelatedWork W3164822677 @default.
- W3019534669 hasRelatedWork W3215138031 @default.
- W3019534669 hasRelatedWork W4223943233 @default.
- W3019534669 hasRelatedWork W4225161397 @default.
- W3019534669 hasRelatedWork W4250304930 @default.
- W3019534669 hasRelatedWork W4309045103 @default.
- W3019534669 hasRelatedWork W4312192474 @default.
- W3019534669 hasRelatedWork W4312200629 @default.
- W3019534669 isParatext "false" @default.
- W3019534669 isRetracted "false" @default.
- W3019534669 magId "3019534669" @default.
- W3019534669 workType "article" @default.