Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019597719> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3019597719 abstract "The health insurance industry generates a wide range of data from patients' information to provider payment and claims report. The impact of fraud, waste, and abuse (FWA) in medical management is on the rise and contributes significantly to the increase in cost. Traditional methods of handling fraud include human inspection and heuristic rules. They are time-consuming, impractical and insufficient. Data Mining and Machine Learning play a dominant role in detecting and preventing fraud. We explore the use of statistical methods to create a rule-based heuristic engine that works with self-learning Decision Trees. This paper introduces a hybrid framework that combines domain expertise (Rule Engine), supervised learning (Decision Trees & Averaged Perceptron) and unsupervised learning (outlier analysis, k-means Clustering) techniques to identify fraudulent claims from a given set of outstanding claims. The investigation team is intimated with a weighted priority queue of outstanding claims listing the most-likely fraudulent claims with remarks for proactive and retrospective analysis. Our initial case study with one insurer demonstrates an increase in hit-rate by 209.4%." @default.
- W3019597719 created "2020-05-01" @default.
- W3019597719 creator A5054272748 @default.
- W3019597719 date "2019-12-01" @default.
- W3019597719 modified "2023-09-25" @default.
- W3019597719 title "Framework for Analysis and Detection of Fraud in Health Insurance" @default.
- W3019597719 cites W1602011302 @default.
- W3019597719 cites W2023511777 @default.
- W3019597719 cites W2037057241 @default.
- W3019597719 cites W2071855775 @default.
- W3019597719 cites W2587081929 @default.
- W3019597719 cites W2765732590 @default.
- W3019597719 cites W2768495044 @default.
- W3019597719 cites W2769365874 @default.
- W3019597719 cites W2787639676 @default.
- W3019597719 cites W2787707077 @default.
- W3019597719 cites W2792553168 @default.
- W3019597719 cites W2887974490 @default.
- W3019597719 cites W2891484158 @default.
- W3019597719 cites W2898816287 @default.
- W3019597719 cites W2904685147 @default.
- W3019597719 cites W2906644533 @default.
- W3019597719 cites W2913488104 @default.
- W3019597719 cites W3121925664 @default.
- W3019597719 doi "https://doi.org/10.1109/ccis48116.2019.9073700" @default.
- W3019597719 hasPublicationYear "2019" @default.
- W3019597719 type Work @default.
- W3019597719 sameAs 3019597719 @default.
- W3019597719 citedByCount "3" @default.
- W3019597719 countsByYear W30195977192021 @default.
- W3019597719 countsByYear W30195977192022 @default.
- W3019597719 crossrefType "proceedings-article" @default.
- W3019597719 hasAuthorship W3019597719A5054272748 @default.
- W3019597719 hasConcept C10138342 @default.
- W3019597719 hasConcept C119857082 @default.
- W3019597719 hasConcept C124101348 @default.
- W3019597719 hasConcept C144133560 @default.
- W3019597719 hasConcept C154945302 @default.
- W3019597719 hasConcept C160735492 @default.
- W3019597719 hasConcept C162324750 @default.
- W3019597719 hasConcept C173801870 @default.
- W3019597719 hasConcept C2779820595 @default.
- W3019597719 hasConcept C41008148 @default.
- W3019597719 hasConcept C50522688 @default.
- W3019597719 hasConcept C73555534 @default.
- W3019597719 hasConcept C739882 @default.
- W3019597719 hasConcept C8038995 @default.
- W3019597719 hasConcept C84525736 @default.
- W3019597719 hasConceptScore W3019597719C10138342 @default.
- W3019597719 hasConceptScore W3019597719C119857082 @default.
- W3019597719 hasConceptScore W3019597719C124101348 @default.
- W3019597719 hasConceptScore W3019597719C144133560 @default.
- W3019597719 hasConceptScore W3019597719C154945302 @default.
- W3019597719 hasConceptScore W3019597719C160735492 @default.
- W3019597719 hasConceptScore W3019597719C162324750 @default.
- W3019597719 hasConceptScore W3019597719C173801870 @default.
- W3019597719 hasConceptScore W3019597719C2779820595 @default.
- W3019597719 hasConceptScore W3019597719C41008148 @default.
- W3019597719 hasConceptScore W3019597719C50522688 @default.
- W3019597719 hasConceptScore W3019597719C73555534 @default.
- W3019597719 hasConceptScore W3019597719C739882 @default.
- W3019597719 hasConceptScore W3019597719C8038995 @default.
- W3019597719 hasConceptScore W3019597719C84525736 @default.
- W3019597719 hasLocation W30195977191 @default.
- W3019597719 hasOpenAccess W3019597719 @default.
- W3019597719 hasPrimaryLocation W30195977191 @default.
- W3019597719 hasRelatedWork W10015831 @default.
- W3019597719 hasRelatedWork W13366983 @default.
- W3019597719 hasRelatedWork W13690516 @default.
- W3019597719 hasRelatedWork W3140435 @default.
- W3019597719 hasRelatedWork W5472403 @default.
- W3019597719 hasRelatedWork W621929 @default.
- W3019597719 hasRelatedWork W7002624 @default.
- W3019597719 hasRelatedWork W845024 @default.
- W3019597719 hasRelatedWork W9769132 @default.
- W3019597719 hasRelatedWork W14155316 @default.
- W3019597719 isParatext "false" @default.
- W3019597719 isRetracted "false" @default.
- W3019597719 magId "3019597719" @default.
- W3019597719 workType "article" @default.