Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019693485> ?p ?o ?g. }
- W3019693485 endingPage "179" @default.
- W3019693485 startingPage "171" @default.
- W3019693485 abstract "We review applications of artificial intelligence (AI), including machine learning (ML), in the field of HIV prevention.ML approaches have been used to identify potential candidates for preexposure prophylaxis (PrEP) in healthcare settings in the USA and Denmark and in a population-based research setting in Eastern Africa. Although still in the proof-of-concept stage, other applications include ML with smartphone-collected and social media data to promote real-time HIV risk reduction, virtual reality tools to facilitate HIV serodisclosure, and chatbots for HIV education. ML has also been used for causal inference in HIV prevention studies. ML has strong potential to improve delivery of PrEP, with this approach moving from development to implementation. Development and evaluation of AI and ML strategies for HIV prevention may benefit from an implementation science approach, including qualitative assessments with end users, and should be developed and evaluated with attention to equity." @default.
- W3019693485 created "2020-05-01" @default.
- W3019693485 creator A5036875098 @default.
- W3019693485 creator A5042666638 @default.
- W3019693485 creator A5059633565 @default.
- W3019693485 creator A5081968611 @default.
- W3019693485 date "2020-04-29" @default.
- W3019693485 modified "2023-10-08" @default.
- W3019693485 title "Artificial Intelligence and Machine Learning for HIV Prevention: Emerging Approaches to Ending the Epidemic" @default.
- W3019693485 cites W1877563293 @default.
- W3019693485 cites W1918881530 @default.
- W3019693485 cites W1921733975 @default.
- W3019693485 cites W1980175070 @default.
- W3019693485 cites W2039832805 @default.
- W3019693485 cites W2086363828 @default.
- W3019693485 cites W2090656275 @default.
- W3019693485 cites W2177870565 @default.
- W3019693485 cites W2251755465 @default.
- W3019693485 cites W2288302583 @default.
- W3019693485 cites W2313913395 @default.
- W3019693485 cites W2520978465 @default.
- W3019693485 cites W2549666191 @default.
- W3019693485 cites W2561800806 @default.
- W3019693485 cites W2576224490 @default.
- W3019693485 cites W2594926730 @default.
- W3019693485 cites W2766690634 @default.
- W3019693485 cites W2773284785 @default.
- W3019693485 cites W2789970635 @default.
- W3019693485 cites W2801281961 @default.
- W3019693485 cites W28412257 @default.
- W3019693485 cites W2888109941 @default.
- W3019693485 cites W2895763047 @default.
- W3019693485 cites W2896202491 @default.
- W3019693485 cites W2897006553 @default.
- W3019693485 cites W2902802452 @default.
- W3019693485 cites W2908201961 @default.
- W3019693485 cites W2912227521 @default.
- W3019693485 cites W2913713488 @default.
- W3019693485 cites W2917286209 @default.
- W3019693485 cites W2943838254 @default.
- W3019693485 cites W2949369884 @default.
- W3019693485 cites W2952874474 @default.
- W3019693485 cites W2952934241 @default.
- W3019693485 cites W2953497237 @default.
- W3019693485 cites W2954737955 @default.
- W3019693485 cites W2955970210 @default.
- W3019693485 cites W2958867317 @default.
- W3019693485 cites W2960675107 @default.
- W3019693485 cites W2961360820 @default.
- W3019693485 cites W2964031043 @default.
- W3019693485 cites W2969468266 @default.
- W3019693485 cites W2973032093 @default.
- W3019693485 cites W2976398475 @default.
- W3019693485 cites W2981869278 @default.
- W3019693485 cites W2984856451 @default.
- W3019693485 cites W2985174788 @default.
- W3019693485 cites W2990413155 @default.
- W3019693485 cites W2990519034 @default.
- W3019693485 cites W2991354320 @default.
- W3019693485 cites W2991569310 @default.
- W3019693485 cites W3007818090 @default.
- W3019693485 cites W3021353477 @default.
- W3019693485 cites W3031754025 @default.
- W3019693485 cites W3106503709 @default.
- W3019693485 cites W4233056867 @default.
- W3019693485 doi "https://doi.org/10.1007/s11904-020-00490-6" @default.
- W3019693485 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7260108" @default.
- W3019693485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32347446" @default.
- W3019693485 hasPublicationYear "2020" @default.
- W3019693485 type Work @default.
- W3019693485 sameAs 3019693485 @default.
- W3019693485 citedByCount "44" @default.
- W3019693485 countsByYear W30196934852020 @default.
- W3019693485 countsByYear W30196934852021 @default.
- W3019693485 countsByYear W30196934852022 @default.
- W3019693485 countsByYear W30196934852023 @default.
- W3019693485 crossrefType "journal-article" @default.
- W3019693485 hasAuthorship W3019693485A5036875098 @default.
- W3019693485 hasAuthorship W3019693485A5042666638 @default.
- W3019693485 hasAuthorship W3019693485A5059633565 @default.
- W3019693485 hasAuthorship W3019693485A5081968611 @default.
- W3019693485 hasBestOaLocation W30196934852 @default.
- W3019693485 hasConcept C119857082 @default.
- W3019693485 hasConcept C154945302 @default.
- W3019693485 hasConcept C15744967 @default.
- W3019693485 hasConcept C203014093 @default.
- W3019693485 hasConcept C2522767166 @default.
- W3019693485 hasConcept C2908647359 @default.
- W3019693485 hasConcept C3013748606 @default.
- W3019693485 hasConcept C41008148 @default.
- W3019693485 hasConcept C71924100 @default.
- W3019693485 hasConcept C99454951 @default.
- W3019693485 hasConceptScore W3019693485C119857082 @default.
- W3019693485 hasConceptScore W3019693485C154945302 @default.
- W3019693485 hasConceptScore W3019693485C15744967 @default.
- W3019693485 hasConceptScore W3019693485C203014093 @default.
- W3019693485 hasConceptScore W3019693485C2522767166 @default.
- W3019693485 hasConceptScore W3019693485C2908647359 @default.