Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019969600> ?p ?o ?g. }
- W3019969600 abstract "In this paper, we address the problem of detecting multiple Noise-Like Jammers (NLJs) through a radar system equipped with an array of sensors. To this end, we develop an elegant and systematic framework wherein two architectures are devised to jointly detect an unknown number of NLJs and to estimate their respective angles of arrival. The followed approach relies on the likelihood ratio test in conjunction with a cyclic estimation procedure which incorporates at the design stage a sparsity promoting prior. As a matter of fact, the problem at hand owns an inherent sparse nature which is suitably exploited. This methodological choice is dictated by the fact that, from a mathematical point of view, classical maximum likelihood approach leads to intractable optimization problems (at least to the best of authors' knowledge) and, hence, a suboptimum approach represents a viable means to solve them. Performance analysis is conducted on simulated data and shows the effectiveness of the proposed architectures in drawing a reliable picture of the electromagnetic threats illuminating the radar system." @default.
- W3019969600 created "2020-05-01" @default.
- W3019969600 creator A5022499603 @default.
- W3019969600 creator A5027835055 @default.
- W3019969600 creator A5044520390 @default.
- W3019969600 creator A5046014658 @default.
- W3019969600 creator A5052883326 @default.
- W3019969600 creator A5055683352 @default.
- W3019969600 creator A5083010373 @default.
- W3019969600 date "2020-04-27" @default.
- W3019969600 modified "2023-09-27" @default.
- W3019969600 title "A Sparse Learning Approach to the Detection of Multiple Noise-Like Jammers" @default.
- W3019969600 cites W1520991158 @default.
- W3019969600 cites W1583946433 @default.
- W3019969600 cites W165139815 @default.
- W3019969600 cites W1814500939 @default.
- W3019969600 cites W1978971170 @default.
- W3019969600 cites W1980129653 @default.
- W3019969600 cites W1986921156 @default.
- W3019969600 cites W2054877413 @default.
- W3019969600 cites W2065607385 @default.
- W3019969600 cites W2067356622 @default.
- W3019969600 cites W2069215735 @default.
- W3019969600 cites W2070587065 @default.
- W3019969600 cites W2076660936 @default.
- W3019969600 cites W2096710051 @default.
- W3019969600 cites W2100686599 @default.
- W3019969600 cites W2103089261 @default.
- W3019969600 cites W2103148898 @default.
- W3019969600 cites W2114217214 @default.
- W3019969600 cites W2115141757 @default.
- W3019969600 cites W2119667497 @default.
- W3019969600 cites W2126885789 @default.
- W3019969600 cites W2136176323 @default.
- W3019969600 cites W2142811628 @default.
- W3019969600 cites W2144158572 @default.
- W3019969600 cites W2163905531 @default.
- W3019969600 cites W2166307990 @default.
- W3019969600 cites W2166979234 @default.
- W3019969600 cites W2168703653 @default.
- W3019969600 cites W2169118664 @default.
- W3019969600 cites W2169652966 @default.
- W3019969600 cites W2247519849 @default.
- W3019969600 cites W2247802672 @default.
- W3019969600 cites W2326234545 @default.
- W3019969600 cites W2475771804 @default.
- W3019969600 cites W2512311144 @default.
- W3019969600 cites W2566654746 @default.
- W3019969600 cites W2593316319 @default.
- W3019969600 cites W2769732806 @default.
- W3019969600 cites W2890705862 @default.
- W3019969600 cites W2946205185 @default.
- W3019969600 cites W2952350176 @default.
- W3019969600 doi "https://doi.org/10.48550/arxiv.2004.12677" @default.
- W3019969600 hasPublicationYear "2020" @default.
- W3019969600 type Work @default.
- W3019969600 sameAs 3019969600 @default.
- W3019969600 citedByCount "0" @default.
- W3019969600 crossrefType "posted-content" @default.
- W3019969600 hasAuthorship W3019969600A5022499603 @default.
- W3019969600 hasAuthorship W3019969600A5027835055 @default.
- W3019969600 hasAuthorship W3019969600A5044520390 @default.
- W3019969600 hasAuthorship W3019969600A5046014658 @default.
- W3019969600 hasAuthorship W3019969600A5052883326 @default.
- W3019969600 hasAuthorship W3019969600A5055683352 @default.
- W3019969600 hasAuthorship W3019969600A5083010373 @default.
- W3019969600 hasBestOaLocation W30199696001 @default.
- W3019969600 hasConcept C105795698 @default.
- W3019969600 hasConcept C11413529 @default.
- W3019969600 hasConcept C115961682 @default.
- W3019969600 hasConcept C119857082 @default.
- W3019969600 hasConcept C154945302 @default.
- W3019969600 hasConcept C2524010 @default.
- W3019969600 hasConcept C28719098 @default.
- W3019969600 hasConcept C33923547 @default.
- W3019969600 hasConcept C41008148 @default.
- W3019969600 hasConcept C49781872 @default.
- W3019969600 hasConcept C554190296 @default.
- W3019969600 hasConcept C76155785 @default.
- W3019969600 hasConcept C99498987 @default.
- W3019969600 hasConceptScore W3019969600C105795698 @default.
- W3019969600 hasConceptScore W3019969600C11413529 @default.
- W3019969600 hasConceptScore W3019969600C115961682 @default.
- W3019969600 hasConceptScore W3019969600C119857082 @default.
- W3019969600 hasConceptScore W3019969600C154945302 @default.
- W3019969600 hasConceptScore W3019969600C2524010 @default.
- W3019969600 hasConceptScore W3019969600C28719098 @default.
- W3019969600 hasConceptScore W3019969600C33923547 @default.
- W3019969600 hasConceptScore W3019969600C41008148 @default.
- W3019969600 hasConceptScore W3019969600C49781872 @default.
- W3019969600 hasConceptScore W3019969600C554190296 @default.
- W3019969600 hasConceptScore W3019969600C76155785 @default.
- W3019969600 hasConceptScore W3019969600C99498987 @default.
- W3019969600 hasLocation W30199696001 @default.
- W3019969600 hasLocation W30199696002 @default.
- W3019969600 hasOpenAccess W3019969600 @default.
- W3019969600 hasPrimaryLocation W30199696001 @default.
- W3019969600 hasRelatedWork W2961085424 @default.
- W3019969600 hasRelatedWork W3046775127 @default.
- W3019969600 hasRelatedWork W3170094116 @default.