Matches in SemOpenAlex for { <https://semopenalex.org/work/W3019974188> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3019974188 endingPage "1741" @default.
- W3019974188 startingPage "1738" @default.
- W3019974188 abstract "One intrinsic property of neural networks is making confident decisions because they do not capture uncertainty in training data. As a result, when Neural Networks (NN) are used in Deep Reinforcement Learning (DRL), agents cannot explore the action-space effectively. Bayesian Neural Networks (BNN) is one alternative that, instead of one value, assigns a probability distribution to the weights of NN. Using BNN as the policy network of an RL agent, the RL agent will have natural exploration capability. Recent studies demonstrate high potential for the application of RL methods in wireless networks. The inefficient exploration capability, however, limits their use cases. In this letter, we show how Bayesian RL agents can be used to solve complex wireless resource allocation problems. We consider the link-level throughput maximization that needs simultaneous power and Modulation/Coding Scheme (MCS) assignment to each user. We show that due to the large and sparse action-space, only Bayes-by-Backprop Q-network (BBQN) agents can find proper assignments. Simulation results show the performance of the proposed scheme in different network settings." @default.
- W3019974188 created "2020-05-01" @default.
- W3019974188 creator A5024260736 @default.
- W3019974188 creator A5026429425 @default.
- W3019974188 creator A5090489682 @default.
- W3019974188 date "2020-08-01" @default.
- W3019974188 modified "2023-09-27" @default.
- W3019974188 title "Bayesian Reinforcement Learning for Link-Level Throughput Maximization" @default.
- W3019974188 cites W1964144113 @default.
- W3019974188 cites W2047229728 @default.
- W3019974188 cites W2962841091 @default.
- W3019974188 cites W3102812201 @default.
- W3019974188 doi "https://doi.org/10.1109/lcomm.2020.2990308" @default.
- W3019974188 hasPublicationYear "2020" @default.
- W3019974188 type Work @default.
- W3019974188 sameAs 3019974188 @default.
- W3019974188 citedByCount "2" @default.
- W3019974188 countsByYear W30199741882022 @default.
- W3019974188 countsByYear W30199741882023 @default.
- W3019974188 crossrefType "journal-article" @default.
- W3019974188 hasAuthorship W3019974188A5024260736 @default.
- W3019974188 hasAuthorship W3019974188A5026429425 @default.
- W3019974188 hasAuthorship W3019974188A5090489682 @default.
- W3019974188 hasConcept C107673813 @default.
- W3019974188 hasConcept C108037233 @default.
- W3019974188 hasConcept C119857082 @default.
- W3019974188 hasConcept C126255220 @default.
- W3019974188 hasConcept C154945302 @default.
- W3019974188 hasConcept C2776330181 @default.
- W3019974188 hasConcept C33724603 @default.
- W3019974188 hasConcept C33923547 @default.
- W3019974188 hasConcept C41008148 @default.
- W3019974188 hasConcept C50644808 @default.
- W3019974188 hasConcept C555944384 @default.
- W3019974188 hasConcept C76155785 @default.
- W3019974188 hasConcept C97541855 @default.
- W3019974188 hasConceptScore W3019974188C107673813 @default.
- W3019974188 hasConceptScore W3019974188C108037233 @default.
- W3019974188 hasConceptScore W3019974188C119857082 @default.
- W3019974188 hasConceptScore W3019974188C126255220 @default.
- W3019974188 hasConceptScore W3019974188C154945302 @default.
- W3019974188 hasConceptScore W3019974188C2776330181 @default.
- W3019974188 hasConceptScore W3019974188C33724603 @default.
- W3019974188 hasConceptScore W3019974188C33923547 @default.
- W3019974188 hasConceptScore W3019974188C41008148 @default.
- W3019974188 hasConceptScore W3019974188C50644808 @default.
- W3019974188 hasConceptScore W3019974188C555944384 @default.
- W3019974188 hasConceptScore W3019974188C76155785 @default.
- W3019974188 hasConceptScore W3019974188C97541855 @default.
- W3019974188 hasIssue "8" @default.
- W3019974188 hasLocation W30199741881 @default.
- W3019974188 hasOpenAccess W3019974188 @default.
- W3019974188 hasPrimaryLocation W30199741881 @default.
- W3019974188 hasRelatedWork W1581446651 @default.
- W3019974188 hasRelatedWork W2065314469 @default.
- W3019974188 hasRelatedWork W2114151954 @default.
- W3019974188 hasRelatedWork W2902946190 @default.
- W3019974188 hasRelatedWork W2963058055 @default.
- W3019974188 hasRelatedWork W3022038857 @default.
- W3019974188 hasRelatedWork W3154094704 @default.
- W3019974188 hasRelatedWork W32248825 @default.
- W3019974188 hasRelatedWork W4319083788 @default.
- W3019974188 hasRelatedWork W1629725936 @default.
- W3019974188 hasVolume "24" @default.
- W3019974188 isParatext "false" @default.
- W3019974188 isRetracted "false" @default.
- W3019974188 magId "3019974188" @default.
- W3019974188 workType "article" @default.