Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020009074> ?p ?o ?g. }
- W3020009074 abstract "Digital in-line holography is commonly used to reconstruct 3D images from 2D holograms for microscopic objects. One of the technical challenges that arise in the signal processing stage is removing the twin image that is caused by the phase-conjugate wavefront from the recorded holograms. Twin image removal is typically formulated as a non-linear inverse problem due to the irreversible scattering process when generating the hologram. Recently, end-to-end deep learning-based methods have been utilized to reconstruct the object wavefront (as a surrogate for the 3D structure of the object) directly from a single-shot in-line digital hologram. However, massive data pairs are required to train deep learning models for acceptable reconstruction precision. In contrast to typical image processing problems, well-curated datasets for in-line digital holography does not exist. Also, the trained model highly influenced by the morphological properties of the object and hence can vary for different applications. Therefore, data collection can be prohibitively cumbersome in practice as a major hindrance to using deep learning for digital holography. In this paper, we proposed a novel implementation of autoencoder-based deep learning architecture for single-shot hologram reconstruction solely based on the current sample without the need for massive datasets to train the model. The simulations results demonstrate the superior performance of the proposed method compared to the state of the art single-shot compressive digital in-line hologram reconstruction method." @default.
- W3020009074 created "2020-05-01" @default.
- W3020009074 creator A5002230180 @default.
- W3020009074 creator A5011987346 @default.
- W3020009074 creator A5026177673 @default.
- W3020009074 creator A5028653447 @default.
- W3020009074 creator A5059614356 @default.
- W3020009074 creator A5063351441 @default.
- W3020009074 date "2020-04-25" @default.
- W3020009074 modified "2023-10-04" @default.
- W3020009074 title "Deep DIH : Statistically Inferred Reconstruction of Digital In-Line Holography by Deep Learning" @default.
- W3020009074 cites W1484412996 @default.
- W3020009074 cites W1522301498 @default.
- W3020009074 cites W1972822190 @default.
- W3020009074 cites W1983568931 @default.
- W3020009074 cites W1989183603 @default.
- W3020009074 cites W1991101760 @default.
- W3020009074 cites W1991438310 @default.
- W3020009074 cites W1991810848 @default.
- W3020009074 cites W1994520136 @default.
- W3020009074 cites W2002959769 @default.
- W3020009074 cites W2006948821 @default.
- W3020009074 cites W2007593159 @default.
- W3020009074 cites W2012910990 @default.
- W3020009074 cites W2015235697 @default.
- W3020009074 cites W2016141196 @default.
- W3020009074 cites W2024122288 @default.
- W3020009074 cites W2030995798 @default.
- W3020009074 cites W2033780296 @default.
- W3020009074 cites W2041559042 @default.
- W3020009074 cites W2047933908 @default.
- W3020009074 cites W2066517966 @default.
- W3020009074 cites W2085293273 @default.
- W3020009074 cites W2108078415 @default.
- W3020009074 cites W2110780667 @default.
- W3020009074 cites W2125516659 @default.
- W3020009074 cites W2128521112 @default.
- W3020009074 cites W2133665775 @default.
- W3020009074 cites W2558542514 @default.
- W3020009074 cites W2800651752 @default.
- W3020009074 cites W2889266398 @default.
- W3020009074 cites W2949117887 @default.
- W3020009074 cites W2964013315 @default.
- W3020009074 cites W2970971581 @default.
- W3020009074 cites W2980272361 @default.
- W3020009074 hasPublicationYear "2020" @default.
- W3020009074 type Work @default.
- W3020009074 sameAs 3020009074 @default.
- W3020009074 citedByCount "0" @default.
- W3020009074 crossrefType "posted-content" @default.
- W3020009074 hasAuthorship W3020009074A5002230180 @default.
- W3020009074 hasAuthorship W3020009074A5011987346 @default.
- W3020009074 hasAuthorship W3020009074A5026177673 @default.
- W3020009074 hasAuthorship W3020009074A5028653447 @default.
- W3020009074 hasAuthorship W3020009074A5059614356 @default.
- W3020009074 hasAuthorship W3020009074A5063351441 @default.
- W3020009074 hasConcept C101738243 @default.
- W3020009074 hasConcept C108583219 @default.
- W3020009074 hasConcept C120665830 @default.
- W3020009074 hasConcept C121332964 @default.
- W3020009074 hasConcept C141379421 @default.
- W3020009074 hasConcept C154945302 @default.
- W3020009074 hasConcept C165699331 @default.
- W3020009074 hasConcept C187590223 @default.
- W3020009074 hasConcept C198352243 @default.
- W3020009074 hasConcept C2524010 @default.
- W3020009074 hasConcept C2776640645 @default.
- W3020009074 hasConcept C2781238097 @default.
- W3020009074 hasConcept C31972630 @default.
- W3020009074 hasConcept C33923547 @default.
- W3020009074 hasConcept C41008148 @default.
- W3020009074 hasConceptScore W3020009074C101738243 @default.
- W3020009074 hasConceptScore W3020009074C108583219 @default.
- W3020009074 hasConceptScore W3020009074C120665830 @default.
- W3020009074 hasConceptScore W3020009074C121332964 @default.
- W3020009074 hasConceptScore W3020009074C141379421 @default.
- W3020009074 hasConceptScore W3020009074C154945302 @default.
- W3020009074 hasConceptScore W3020009074C165699331 @default.
- W3020009074 hasConceptScore W3020009074C187590223 @default.
- W3020009074 hasConceptScore W3020009074C198352243 @default.
- W3020009074 hasConceptScore W3020009074C2524010 @default.
- W3020009074 hasConceptScore W3020009074C2776640645 @default.
- W3020009074 hasConceptScore W3020009074C2781238097 @default.
- W3020009074 hasConceptScore W3020009074C31972630 @default.
- W3020009074 hasConceptScore W3020009074C33923547 @default.
- W3020009074 hasConceptScore W3020009074C41008148 @default.
- W3020009074 hasLocation W30200090741 @default.
- W3020009074 hasOpenAccess W3020009074 @default.
- W3020009074 hasPrimaryLocation W30200090741 @default.
- W3020009074 hasRelatedWork W2037782510 @default.
- W3020009074 hasRelatedWork W2059057564 @default.
- W3020009074 hasRelatedWork W2067404967 @default.
- W3020009074 hasRelatedWork W2075751525 @default.
- W3020009074 hasRelatedWork W2313364749 @default.
- W3020009074 hasRelatedWork W2509377107 @default.
- W3020009074 hasRelatedWork W2594383115 @default.
- W3020009074 hasRelatedWork W2612688942 @default.
- W3020009074 hasRelatedWork W2920872099 @default.
- W3020009074 hasRelatedWork W2944409840 @default.
- W3020009074 hasRelatedWork W2998163245 @default.