Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020014922> ?p ?o ?g. }
- W3020014922 endingPage "121871" @default.
- W3020014922 startingPage "121871" @default.
- W3020014922 abstract "Abstract The effect of temperature on the volume and surface contributions in the nuclear symmetry energy and their ratio in the isotopic chains of rare earth Nd, Sm, Gd, and Dy nuclei with N = 82-126 is analyzed in the framework of coherent density fluctuation model (CDFM). The weight function of nuclei, within CDFM, are calculated by using the densities from the temperature-dependent relativistic mean-field (RMF) model. Firstly, we discuss the temperature-dependence of bulk properties of nuclei, within RMF model, such as binding energy, deformation parameter, charge radius and isotopic shift along with comparison with the available experimental data at temperature T = 0 MeV. Further, we discuss the thermal evolution of symmetry energy and its volume and surface components. At T = 0 MeV, the persistence of a peak in the symmetry energy and components at neutron number N = 100 shows the manifestation of deformed shell closure in consonance with an earlier study by one of us [L. Satpathy, S.K. Patra, J. Phys. G 30 (2004) 771; S.K. Ghorui, et al., Phys. Rev. C 85 (2012) 064327]. However, the scenario changes with rise in temperature and the magnitude of peak decreases at higher temperatures. At T = 3 MeV, the peak disappears which may be due to shape change in addition to quenching of shell effects since the quadrupole deformation parameter β 2 decreases with an increase in temperature and nuclei become spherical at T = 3 MeV. It indicates that behavior of symmetry energy is closely related to the deformation/shape of the nuclei. We have also discussed the values of volume symmetry energy, surface symmetry energy and their ratio which are in consonance with available experimental data." @default.
- W3020014922 created "2020-05-01" @default.
- W3020014922 creator A5010889644 @default.
- W3020014922 creator A5021946587 @default.
- W3020014922 creator A5035384332 @default.
- W3020014922 creator A5048385317 @default.
- W3020014922 creator A5049304880 @default.
- W3020014922 date "2020-08-01" @default.
- W3020014922 modified "2023-09-27" @default.
- W3020014922 title "Effect of temperature on the volume and surface contributions in the symmetry energy of rare earth nuclei" @default.
- W3020014922 cites W1482683629 @default.
- W3020014922 cites W1539738662 @default.
- W3020014922 cites W1541071550 @default.
- W3020014922 cites W1964129202 @default.
- W3020014922 cites W1965638352 @default.
- W3020014922 cites W1969402234 @default.
- W3020014922 cites W1971362029 @default.
- W3020014922 cites W1974455323 @default.
- W3020014922 cites W1975523037 @default.
- W3020014922 cites W1979476546 @default.
- W3020014922 cites W1982157710 @default.
- W3020014922 cites W1989214800 @default.
- W3020014922 cites W1991194952 @default.
- W3020014922 cites W1992966965 @default.
- W3020014922 cites W2000052090 @default.
- W3020014922 cites W2002917384 @default.
- W3020014922 cites W2004451335 @default.
- W3020014922 cites W2004679795 @default.
- W3020014922 cites W2006606629 @default.
- W3020014922 cites W2007709299 @default.
- W3020014922 cites W2008126678 @default.
- W3020014922 cites W2011491364 @default.
- W3020014922 cites W2016515266 @default.
- W3020014922 cites W2018766212 @default.
- W3020014922 cites W2019909938 @default.
- W3020014922 cites W2021140666 @default.
- W3020014922 cites W2024112767 @default.
- W3020014922 cites W2028027803 @default.
- W3020014922 cites W2028281440 @default.
- W3020014922 cites W2028602078 @default.
- W3020014922 cites W2032332167 @default.
- W3020014922 cites W2035638410 @default.
- W3020014922 cites W2038016879 @default.
- W3020014922 cites W2038127617 @default.
- W3020014922 cites W2039933630 @default.
- W3020014922 cites W2041452174 @default.
- W3020014922 cites W2041474150 @default.
- W3020014922 cites W2043457852 @default.
- W3020014922 cites W2047056556 @default.
- W3020014922 cites W2047273920 @default.
- W3020014922 cites W2048055073 @default.
- W3020014922 cites W2060768354 @default.
- W3020014922 cites W2062750979 @default.
- W3020014922 cites W2066887688 @default.
- W3020014922 cites W2069257243 @default.
- W3020014922 cites W2069338046 @default.
- W3020014922 cites W2070272529 @default.
- W3020014922 cites W2072077981 @default.
- W3020014922 cites W2074271147 @default.
- W3020014922 cites W2079790992 @default.
- W3020014922 cites W2079933760 @default.
- W3020014922 cites W2081303191 @default.
- W3020014922 cites W2087915977 @default.
- W3020014922 cites W2101159904 @default.
- W3020014922 cites W2103383195 @default.
- W3020014922 cites W2113485352 @default.
- W3020014922 cites W2114393116 @default.
- W3020014922 cites W2117500922 @default.
- W3020014922 cites W2119734739 @default.
- W3020014922 cites W2131369996 @default.
- W3020014922 cites W2132046346 @default.
- W3020014922 cites W2144642294 @default.
- W3020014922 cites W2146627601 @default.
- W3020014922 cites W2148936717 @default.
- W3020014922 cites W2170191728 @default.
- W3020014922 cites W2316105663 @default.
- W3020014922 cites W2486722205 @default.
- W3020014922 cites W2612669052 @default.
- W3020014922 cites W2752290578 @default.
- W3020014922 cites W2785685539 @default.
- W3020014922 cites W2792300301 @default.
- W3020014922 cites W2801637728 @default.
- W3020014922 cites W2883327832 @default.
- W3020014922 cites W2941239510 @default.
- W3020014922 cites W2981084969 @default.
- W3020014922 cites W3099474299 @default.
- W3020014922 cites W3100060538 @default.
- W3020014922 cites W3100839224 @default.
- W3020014922 cites W3101919188 @default.
- W3020014922 cites W3103297770 @default.
- W3020014922 cites W3103710041 @default.
- W3020014922 cites W3106332583 @default.
- W3020014922 cites W3125691190 @default.
- W3020014922 cites W4232994501 @default.
- W3020014922 cites W2079997096 @default.
- W3020014922 doi "https://doi.org/10.1016/j.nuclphysa.2020.121871" @default.
- W3020014922 hasPublicationYear "2020" @default.
- W3020014922 type Work @default.