Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020121606> ?p ?o ?g. }
- W3020121606 endingPage "871" @default.
- W3020121606 startingPage "845" @default.
- W3020121606 abstract "Currently, functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders. If one brain disease just manifests as some cognitive dysfunction, it means that the disease may affect some local connectivity in the brain functional network. That is, there are functional abnormalities in the sub-network. Therefore, it is crucial to accurately identify them in pathological diagnosis. To solve these problems, we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization (GNMF). The dynamic functional networks of normal subjects and early mild cognitive impairment (eMCI) subjects were vectorized and the functional connection vectors (FCV) were assembled to aggregation matrices. Then GNMF was applied to factorize the aggregation matrix to get the base matrix, in which the column vectors were restored to a common sub-network and a distinctive sub-network, and visualization and statistical analysis were conducted on the two sub-networks, respectively. Experimental results demonstrated that, compared with other matrix factorization methods, the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects, as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects, Therefore, the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space, which provides a new idea for studying brain functional connectomes." @default.
- W3020121606 created "2020-05-01" @default.
- W3020121606 creator A5007987858 @default.
- W3020121606 creator A5020603270 @default.
- W3020121606 creator A5050317552 @default.
- W3020121606 creator A5075402691 @default.
- W3020121606 date "2020-01-01" @default.
- W3020121606 modified "2023-09-25" @default.
- W3020121606 title "Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization" @default.
- W3020121606 cites W140563766 @default.
- W3020121606 cites W1487431580 @default.
- W3020121606 cites W1552598564 @default.
- W3020121606 cites W1814100322 @default.
- W3020121606 cites W1902027874 @default.
- W3020121606 cites W2026384313 @default.
- W3020121606 cites W2037035617 @default.
- W3020121606 cites W2058046532 @default.
- W3020121606 cites W2080932240 @default.
- W3020121606 cites W2097624672 @default.
- W3020121606 cites W2108119513 @default.
- W3020121606 cites W2137526583 @default.
- W3020121606 cites W2137554996 @default.
- W3020121606 cites W2143084910 @default.
- W3020121606 cites W2153317402 @default.
- W3020121606 cites W2160547390 @default.
- W3020121606 cites W2162010696 @default.
- W3020121606 cites W2163722029 @default.
- W3020121606 cites W2273717528 @default.
- W3020121606 cites W2293331350 @default.
- W3020121606 cites W2619183973 @default.
- W3020121606 cites W2677096981 @default.
- W3020121606 cites W2736333670 @default.
- W3020121606 cites W2737156152 @default.
- W3020121606 cites W2758189514 @default.
- W3020121606 cites W2792891765 @default.
- W3020121606 cites W2963366775 @default.
- W3020121606 doi "https://doi.org/10.32604/cmes.2020.08999" @default.
- W3020121606 hasPublicationYear "2020" @default.
- W3020121606 type Work @default.
- W3020121606 sameAs 3020121606 @default.
- W3020121606 citedByCount "8" @default.
- W3020121606 countsByYear W30201216062021 @default.
- W3020121606 countsByYear W30201216062022 @default.
- W3020121606 crossrefType "journal-article" @default.
- W3020121606 hasAuthorship W3020121606A5007987858 @default.
- W3020121606 hasAuthorship W3020121606A5020603270 @default.
- W3020121606 hasAuthorship W3020121606A5050317552 @default.
- W3020121606 hasAuthorship W3020121606A5075402691 @default.
- W3020121606 hasBestOaLocation W30201216061 @default.
- W3020121606 hasConcept C114614502 @default.
- W3020121606 hasConcept C121332964 @default.
- W3020121606 hasConcept C132525143 @default.
- W3020121606 hasConcept C152671427 @default.
- W3020121606 hasConcept C153180895 @default.
- W3020121606 hasConcept C154945302 @default.
- W3020121606 hasConcept C158693339 @default.
- W3020121606 hasConcept C169760540 @default.
- W3020121606 hasConcept C180356752 @default.
- W3020121606 hasConcept C2779097318 @default.
- W3020121606 hasConcept C2780186347 @default.
- W3020121606 hasConcept C3018011982 @default.
- W3020121606 hasConcept C31258907 @default.
- W3020121606 hasConcept C33923547 @default.
- W3020121606 hasConcept C41008148 @default.
- W3020121606 hasConcept C42355184 @default.
- W3020121606 hasConcept C45715564 @default.
- W3020121606 hasConcept C58693492 @default.
- W3020121606 hasConcept C62520636 @default.
- W3020121606 hasConcept C80444323 @default.
- W3020121606 hasConcept C86803240 @default.
- W3020121606 hasConcept C88230418 @default.
- W3020121606 hasConceptScore W3020121606C114614502 @default.
- W3020121606 hasConceptScore W3020121606C121332964 @default.
- W3020121606 hasConceptScore W3020121606C132525143 @default.
- W3020121606 hasConceptScore W3020121606C152671427 @default.
- W3020121606 hasConceptScore W3020121606C153180895 @default.
- W3020121606 hasConceptScore W3020121606C154945302 @default.
- W3020121606 hasConceptScore W3020121606C158693339 @default.
- W3020121606 hasConceptScore W3020121606C169760540 @default.
- W3020121606 hasConceptScore W3020121606C180356752 @default.
- W3020121606 hasConceptScore W3020121606C2779097318 @default.
- W3020121606 hasConceptScore W3020121606C2780186347 @default.
- W3020121606 hasConceptScore W3020121606C3018011982 @default.
- W3020121606 hasConceptScore W3020121606C31258907 @default.
- W3020121606 hasConceptScore W3020121606C33923547 @default.
- W3020121606 hasConceptScore W3020121606C41008148 @default.
- W3020121606 hasConceptScore W3020121606C42355184 @default.
- W3020121606 hasConceptScore W3020121606C45715564 @default.
- W3020121606 hasConceptScore W3020121606C58693492 @default.
- W3020121606 hasConceptScore W3020121606C62520636 @default.
- W3020121606 hasConceptScore W3020121606C80444323 @default.
- W3020121606 hasConceptScore W3020121606C86803240 @default.
- W3020121606 hasConceptScore W3020121606C88230418 @default.
- W3020121606 hasIssue "2" @default.
- W3020121606 hasLocation W30201216061 @default.
- W3020121606 hasOpenAccess W3020121606 @default.
- W3020121606 hasPrimaryLocation W30201216061 @default.
- W3020121606 hasRelatedWork W1927438844 @default.