Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020215089> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3020215089 abstract "Wireless sensor networks (WSNs) are considered as a major technology enabling the Internet of Things (IoT) paradigm. The recent emerging Graph Signal Processing field can also contribute to enabling the IoT by providing key tools, such as graph filters, for processing the data associated with the sensor devices. Graph filters can be performed over WSNs in a distributed manner by means of a certain number of communication exchanges among the nodes. But, WSNs are often affected by interferences and noise, which leads to view these networks as directed, random and time-varying graph topologies. Most of existing works neglect this problem by considering an unrealistic assumption that claims the same probability of link activation in both directions when sending a packet between two neighboring nodes. This work focuses on the problem of operating graph filtering in random asymmetric WSNs. We show first that graph filtering with finite impulse response graph filters (node-invariant and node-variant) requires having equal connectivity probabilities for all the links in order to have an unbiased filtering, which can not be achieved in practice in random WSNs. After this, we characterize the graph filtering error and present an efficient strategy to conduct graph filtering tasks over random WSNs with node-variant graph filters by maximizing accuracy, that is, ensuring a small bias-variance trade-off. In order to enforce the desired accuracy, we optimize the filter coefficients and design a cross-layer distributed scheduling algorithm at the MAC layer. Extensive numerical experiments are presented to show the efficiency of the proposed solution as well as the cross-layer distributed scheduling algorithm for the denoising application." @default.
- W3020215089 created "2020-05-01" @default.
- W3020215089 creator A5004326339 @default.
- W3020215089 creator A5047173758 @default.
- W3020215089 date "2020-04-24" @default.
- W3020215089 modified "2023-09-27" @default.
- W3020215089 title "Accurate Graph Filtering in Wireless Sensor Networks" @default.
- W3020215089 cites W1428300275 @default.
- W3020215089 cites W1698699930 @default.
- W3020215089 cites W1914182992 @default.
- W3020215089 cites W1976257805 @default.
- W3020215089 cites W1989598710 @default.
- W3020215089 cites W1990488619 @default.
- W3020215089 cites W2004874862 @default.
- W3020215089 cites W2016926874 @default.
- W3020215089 cites W2018095698 @default.
- W3020215089 cites W2021812446 @default.
- W3020215089 cites W2032044178 @default.
- W3020215089 cites W2039480765 @default.
- W3020215089 cites W2043730137 @default.
- W3020215089 cites W2048655757 @default.
- W3020215089 cites W2070473990 @default.
- W3020215089 cites W2090768129 @default.
- W3020215089 cites W2094772386 @default.
- W3020215089 cites W2101491865 @default.
- W3020215089 cites W2118028500 @default.
- W3020215089 cites W2119308346 @default.
- W3020215089 cites W2119699244 @default.
- W3020215089 cites W2137775453 @default.
- W3020215089 cites W2151474703 @default.
- W3020215089 cites W2155730370 @default.
- W3020215089 cites W2160695204 @default.
- W3020215089 cites W2170044052 @default.
- W3020215089 cites W2252984395 @default.
- W3020215089 cites W2396234481 @default.
- W3020215089 cites W2521050763 @default.
- W3020215089 cites W2566414437 @default.
- W3020215089 cites W2610267922 @default.
- W3020215089 cites W2616297073 @default.
- W3020215089 cites W2763569390 @default.
- W3020215089 cites W2790864716 @default.
- W3020215089 cites W2801824694 @default.
- W3020215089 cites W2885104635 @default.
- W3020215089 cites W2888906932 @default.
- W3020215089 cites W2923656371 @default.
- W3020215089 cites W2943893148 @default.
- W3020215089 cites W2962771678 @default.
- W3020215089 cites W2963165401 @default.
- W3020215089 cites W768331891 @default.
- W3020215089 hasPublicationYear "2020" @default.
- W3020215089 type Work @default.
- W3020215089 sameAs 3020215089 @default.
- W3020215089 citedByCount "0" @default.
- W3020215089 crossrefType "posted-content" @default.
- W3020215089 hasAuthorship W3020215089A5004326339 @default.
- W3020215089 hasAuthorship W3020215089A5047173758 @default.
- W3020215089 hasConcept C11413529 @default.
- W3020215089 hasConcept C120314980 @default.
- W3020215089 hasConcept C132525143 @default.
- W3020215089 hasConcept C24590314 @default.
- W3020215089 hasConcept C31258907 @default.
- W3020215089 hasConcept C41008148 @default.
- W3020215089 hasConcept C80444323 @default.
- W3020215089 hasConceptScore W3020215089C11413529 @default.
- W3020215089 hasConceptScore W3020215089C120314980 @default.
- W3020215089 hasConceptScore W3020215089C132525143 @default.
- W3020215089 hasConceptScore W3020215089C24590314 @default.
- W3020215089 hasConceptScore W3020215089C31258907 @default.
- W3020215089 hasConceptScore W3020215089C41008148 @default.
- W3020215089 hasConceptScore W3020215089C80444323 @default.
- W3020215089 hasLocation W30202150891 @default.
- W3020215089 hasOpenAccess W3020215089 @default.
- W3020215089 hasPrimaryLocation W30202150891 @default.
- W3020215089 hasRelatedWork W1558914974 @default.
- W3020215089 hasRelatedWork W1600959499 @default.
- W3020215089 hasRelatedWork W1602265777 @default.
- W3020215089 hasRelatedWork W1982490730 @default.
- W3020215089 hasRelatedWork W2009179299 @default.
- W3020215089 hasRelatedWork W2032355069 @default.
- W3020215089 hasRelatedWork W2077246855 @default.
- W3020215089 hasRelatedWork W2104432491 @default.
- W3020215089 hasRelatedWork W2107721222 @default.
- W3020215089 hasRelatedWork W2109116904 @default.
- W3020215089 hasRelatedWork W2138291653 @default.
- W3020215089 hasRelatedWork W2272675697 @default.
- W3020215089 hasRelatedWork W2888906932 @default.
- W3020215089 hasRelatedWork W2895813052 @default.
- W3020215089 hasRelatedWork W3003835170 @default.
- W3020215089 hasRelatedWork W3031454126 @default.
- W3020215089 hasRelatedWork W3040502399 @default.
- W3020215089 hasRelatedWork W3130137923 @default.
- W3020215089 hasRelatedWork W3132160234 @default.
- W3020215089 hasRelatedWork W3171536123 @default.
- W3020215089 isParatext "false" @default.
- W3020215089 isRetracted "false" @default.
- W3020215089 magId "3020215089" @default.
- W3020215089 workType "article" @default.