Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020221556> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3020221556 abstract "Several studies have been conducted to automatically recognize activities of construction equipment using their generated sound patterns. Most of these studies are focused on single-machine scenarios under controlled environments. However, real construction job sites are more complex and often consist of several types of equipment with different orientations, directions, and locations working simultaneously. The current state-of-research for recognizing activities of multiple machines on a job site is hardware-oriented, on the basis of using microphone arrays (i.e., several single microphones installed on a board under specific geometric layout) and beamforming principles for classifying sound directions for each machine. While effective, the common hardware-approach has limitations and using microphone arrays is not always a feasible option at ordinary job sites. In this paper, the authors proposed a software-oriented approach using Deep Neural Networks (DNNs) and Time-Frequency Masks (TFMs) to address this issue. The proposed method requires using single microphones, as the sound sources could be differentiated by training a DNN. The presented approach has been tested and validated under simulated job site conditions where two machines operated simultaneously. Results show that the average accuracy for soft TFM is 38% higher than binary TFM." @default.
- W3020221556 created "2020-05-01" @default.
- W3020221556 creator A5003504268 @default.
- W3020221556 creator A5032190715 @default.
- W3020221556 creator A5051462900 @default.
- W3020221556 date "2020-04-24" @default.
- W3020221556 modified "2023-10-17" @default.
- W3020221556 title "A Software-Based Approach for Acoustical Modeling of Construction Job Sites with Multiple Operational Machines" @default.
- W3020221556 cites W1986594951 @default.
- W3020221556 cites W2006577967 @default.
- W3020221556 cites W2046233597 @default.
- W3020221556 cites W2098950531 @default.
- W3020221556 cites W2119647652 @default.
- W3020221556 cites W2127851351 @default.
- W3020221556 cites W2135823751 @default.
- W3020221556 cites W2140592340 @default.
- W3020221556 cites W2149709356 @default.
- W3020221556 cites W2408643379 @default.
- W3020221556 cites W2624782919 @default.
- W3020221556 cites W2704368076 @default.
- W3020221556 cites W2783473931 @default.
- W3020221556 cites W2794289187 @default.
- W3020221556 cites W2885037021 @default.
- W3020221556 cites W2885628846 @default.
- W3020221556 cites W2903267004 @default.
- W3020221556 cites W2941742577 @default.
- W3020221556 cites W2949822482 @default.
- W3020221556 cites W2955224791 @default.
- W3020221556 cites W2999077131 @default.
- W3020221556 cites W2999441934 @default.
- W3020221556 cites W3000576154 @default.
- W3020221556 cites W3104567271 @default.
- W3020221556 doi "https://doi.org/10.48550/arxiv.2004.12042" @default.
- W3020221556 hasPublicationYear "2020" @default.
- W3020221556 type Work @default.
- W3020221556 sameAs 3020221556 @default.
- W3020221556 citedByCount "0" @default.
- W3020221556 crossrefType "posted-content" @default.
- W3020221556 hasAuthorship W3020221556A5003504268 @default.
- W3020221556 hasAuthorship W3020221556A5032190715 @default.
- W3020221556 hasAuthorship W3020221556A5051462900 @default.
- W3020221556 hasBestOaLocation W30202215561 @default.
- W3020221556 hasConcept C113775141 @default.
- W3020221556 hasConcept C154945302 @default.
- W3020221556 hasConcept C199360897 @default.
- W3020221556 hasConcept C2777904410 @default.
- W3020221556 hasConcept C2778263558 @default.
- W3020221556 hasConcept C2778806681 @default.
- W3020221556 hasConcept C33923547 @default.
- W3020221556 hasConcept C41008148 @default.
- W3020221556 hasConcept C48372109 @default.
- W3020221556 hasConcept C50644808 @default.
- W3020221556 hasConcept C54197355 @default.
- W3020221556 hasConcept C68115822 @default.
- W3020221556 hasConcept C76155785 @default.
- W3020221556 hasConcept C94375191 @default.
- W3020221556 hasConceptScore W3020221556C113775141 @default.
- W3020221556 hasConceptScore W3020221556C154945302 @default.
- W3020221556 hasConceptScore W3020221556C199360897 @default.
- W3020221556 hasConceptScore W3020221556C2777904410 @default.
- W3020221556 hasConceptScore W3020221556C2778263558 @default.
- W3020221556 hasConceptScore W3020221556C2778806681 @default.
- W3020221556 hasConceptScore W3020221556C33923547 @default.
- W3020221556 hasConceptScore W3020221556C41008148 @default.
- W3020221556 hasConceptScore W3020221556C48372109 @default.
- W3020221556 hasConceptScore W3020221556C50644808 @default.
- W3020221556 hasConceptScore W3020221556C54197355 @default.
- W3020221556 hasConceptScore W3020221556C68115822 @default.
- W3020221556 hasConceptScore W3020221556C76155785 @default.
- W3020221556 hasConceptScore W3020221556C94375191 @default.
- W3020221556 hasLocation W30202215561 @default.
- W3020221556 hasOpenAccess W3020221556 @default.
- W3020221556 hasPrimaryLocation W30202215561 @default.
- W3020221556 hasRelatedWork W11590648 @default.
- W3020221556 hasRelatedWork W14578209 @default.
- W3020221556 hasRelatedWork W14982696 @default.
- W3020221556 hasRelatedWork W2287078 @default.
- W3020221556 hasRelatedWork W2998112 @default.
- W3020221556 hasRelatedWork W4399642 @default.
- W3020221556 hasRelatedWork W6397236 @default.
- W3020221556 hasRelatedWork W7575313 @default.
- W3020221556 hasRelatedWork W9177116 @default.
- W3020221556 hasRelatedWork W9455070 @default.
- W3020221556 isParatext "false" @default.
- W3020221556 isRetracted "false" @default.
- W3020221556 magId "3020221556" @default.
- W3020221556 workType "article" @default.