Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020227548> ?p ?o ?g. }
- W3020227548 abstract "Abstract The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk’s theorem analysis showed that the ‘FA fine’ metric of the RSI model and ‘orientation dispersion’ (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI." @default.
- W3020227548 created "2020-05-01" @default.
- W3020227548 creator A5002668347 @default.
- W3020227548 creator A5020215901 @default.
- W3020227548 creator A5037337043 @default.
- W3020227548 creator A5042292095 @default.
- W3020227548 creator A5050771726 @default.
- W3020227548 creator A5051807594 @default.
- W3020227548 creator A5085719301 @default.
- W3020227548 date "2020-04-23" @default.
- W3020227548 modified "2023-10-18" @default.
- W3020227548 title "White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction" @default.
- W3020227548 cites W1024451551 @default.
- W3020227548 cites W1523984875 @default.
- W3020227548 cites W1597940528 @default.
- W3020227548 cites W1672229930 @default.
- W3020227548 cites W1797584621 @default.
- W3020227548 cites W1941705080 @default.
- W3020227548 cites W1948479726 @default.
- W3020227548 cites W1968231693 @default.
- W3020227548 cites W1977143881 @default.
- W3020227548 cites W1977845408 @default.
- W3020227548 cites W1979849031 @default.
- W3020227548 cites W1981027686 @default.
- W3020227548 cites W1992875539 @default.
- W3020227548 cites W1993637224 @default.
- W3020227548 cites W2001612051 @default.
- W3020227548 cites W2005552408 @default.
- W3020227548 cites W2006096283 @default.
- W3020227548 cites W2009837079 @default.
- W3020227548 cites W2019841176 @default.
- W3020227548 cites W2020823327 @default.
- W3020227548 cites W2032254014 @default.
- W3020227548 cites W2038568172 @default.
- W3020227548 cites W2044345351 @default.
- W3020227548 cites W2046557060 @default.
- W3020227548 cites W2047350025 @default.
- W3020227548 cites W2059095381 @default.
- W3020227548 cites W2071881327 @default.
- W3020227548 cites W2076472237 @default.
- W3020227548 cites W2085195348 @default.
- W3020227548 cites W2087396173 @default.
- W3020227548 cites W2090292243 @default.
- W3020227548 cites W2107431748 @default.
- W3020227548 cites W2109485534 @default.
- W3020227548 cites W2113127248 @default.
- W3020227548 cites W2113576511 @default.
- W3020227548 cites W2116823839 @default.
- W3020227548 cites W2117480798 @default.
- W3020227548 cites W2119980272 @default.
- W3020227548 cites W2123523993 @default.
- W3020227548 cites W2126693856 @default.
- W3020227548 cites W2127309075 @default.
- W3020227548 cites W2130801245 @default.
- W3020227548 cites W2142018683 @default.
- W3020227548 cites W2147927529 @default.
- W3020227548 cites W2149600133 @default.
- W3020227548 cites W2150667092 @default.
- W3020227548 cites W2153999622 @default.
- W3020227548 cites W2165020693 @default.
- W3020227548 cites W2177835590 @default.
- W3020227548 cites W2177917702 @default.
- W3020227548 cites W2198243321 @default.
- W3020227548 cites W2211147350 @default.
- W3020227548 cites W2410002917 @default.
- W3020227548 cites W2413955537 @default.
- W3020227548 cites W2511854438 @default.
- W3020227548 cites W2549744279 @default.
- W3020227548 cites W2561810854 @default.
- W3020227548 cites W2602552939 @default.
- W3020227548 cites W2621797817 @default.
- W3020227548 cites W2737379596 @default.
- W3020227548 cites W2741829806 @default.
- W3020227548 cites W2768271247 @default.
- W3020227548 cites W2773313676 @default.
- W3020227548 cites W2782556780 @default.
- W3020227548 cites W2787571758 @default.
- W3020227548 cites W2802229722 @default.
- W3020227548 cites W2883837475 @default.
- W3020227548 cites W2888526713 @default.
- W3020227548 cites W2894881888 @default.
- W3020227548 cites W2947561325 @default.
- W3020227548 cites W2950396589 @default.
- W3020227548 cites W2951042025 @default.
- W3020227548 cites W2951479191 @default.
- W3020227548 cites W2952824318 @default.
- W3020227548 cites W2962681100 @default.
- W3020227548 cites W2964012060 @default.
- W3020227548 cites W2965338622 @default.
- W3020227548 cites W2976981404 @default.
- W3020227548 cites W2977883299 @default.
- W3020227548 cites W2979455895 @default.
- W3020227548 cites W2980445988 @default.
- W3020227548 cites W2980541791 @default.
- W3020227548 cites W3005951976 @default.
- W3020227548 cites W3008898407 @default.
- W3020227548 cites W3019991145 @default.
- W3020227548 cites W3025059212 @default.
- W3020227548 cites W3041258432 @default.
- W3020227548 cites W3088593655 @default.