Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020239300> ?p ?o ?g. }
- W3020239300 endingPage "5823" @default.
- W3020239300 startingPage "5811" @default.
- W3020239300 abstract "Electric vehicles (EVs) have rapidly developed in recent years and their penetration has also significantly increased, which, however, brings new challenges to power systems. Due to their stochastic behaviors, the improper charging strategies for EVs may violate the voltage security region. To address this problem, an optimal EV charging strategy in a distribution network is proposed to maximize the profit of the distribution system operators while satisfying all the physical constraints. When dealing with the uncertainties from EVs, a Markov decision process model is built to characterize the time series of the uncertainties, and then the deep deterministic policy gradient based reinforcement learning technique is utilized to analyze the impact of uncertainties on the charging strategy. Finally, numerical results verify the effectiveness of the proposed method." @default.
- W3020239300 created "2020-05-01" @default.
- W3020239300 creator A5005904143 @default.
- W3020239300 creator A5010781360 @default.
- W3020239300 creator A5012078711 @default.
- W3020239300 creator A5023048207 @default.
- W3020239300 creator A5062440795 @default.
- W3020239300 creator A5067830885 @default.
- W3020239300 date "2020-09-01" @default.
- W3020239300 modified "2023-10-18" @default.
- W3020239300 title "Optimal Electric Vehicle Charging Strategy With Markov Decision Process and Reinforcement Learning Technique" @default.
- W3020239300 cites W1981725366 @default.
- W3020239300 cites W1988156359 @default.
- W3020239300 cites W1993196546 @default.
- W3020239300 cites W2010822771 @default.
- W3020239300 cites W2019698399 @default.
- W3020239300 cites W2045870698 @default.
- W3020239300 cites W2052455079 @default.
- W3020239300 cites W2055626365 @default.
- W3020239300 cites W2063996928 @default.
- W3020239300 cites W2070282304 @default.
- W3020239300 cites W2083287037 @default.
- W3020239300 cites W2093184740 @default.
- W3020239300 cites W2093764240 @default.
- W3020239300 cites W2098738097 @default.
- W3020239300 cites W2102760637 @default.
- W3020239300 cites W2117923429 @default.
- W3020239300 cites W2145339207 @default.
- W3020239300 cites W2284207070 @default.
- W3020239300 cites W2315900678 @default.
- W3020239300 cites W2340130488 @default.
- W3020239300 cites W2342546046 @default.
- W3020239300 cites W2342761063 @default.
- W3020239300 cites W2465800247 @default.
- W3020239300 cites W2490140085 @default.
- W3020239300 cites W2525247567 @default.
- W3020239300 cites W2529893468 @default.
- W3020239300 cites W2588616313 @default.
- W3020239300 cites W2594856715 @default.
- W3020239300 cites W271954577 @default.
- W3020239300 cites W2767069366 @default.
- W3020239300 cites W2773369396 @default.
- W3020239300 cites W2793153958 @default.
- W3020239300 cites W2804944297 @default.
- W3020239300 cites W2807832563 @default.
- W3020239300 cites W2887968838 @default.
- W3020239300 cites W2888317454 @default.
- W3020239300 cites W2889488908 @default.
- W3020239300 cites W2889892954 @default.
- W3020239300 cites W2898088104 @default.
- W3020239300 cites W2901645090 @default.
- W3020239300 cites W2908527713 @default.
- W3020239300 cites W2910417102 @default.
- W3020239300 cites W2912162802 @default.
- W3020239300 cites W2942070674 @default.
- W3020239300 cites W2965543987 @default.
- W3020239300 cites W2966109716 @default.
- W3020239300 cites W2969843367 @default.
- W3020239300 cites W2976987906 @default.
- W3020239300 cites W3017180860 @default.
- W3020239300 cites W3104190602 @default.
- W3020239300 cites W32403112 @default.
- W3020239300 doi "https://doi.org/10.1109/tia.2020.2990096" @default.
- W3020239300 hasPublicationYear "2020" @default.
- W3020239300 type Work @default.
- W3020239300 sameAs 3020239300 @default.
- W3020239300 citedByCount "68" @default.
- W3020239300 countsByYear W30202393002021 @default.
- W3020239300 countsByYear W30202393002022 @default.
- W3020239300 countsByYear W30202393002023 @default.
- W3020239300 crossrefType "journal-article" @default.
- W3020239300 hasAuthorship W3020239300A5005904143 @default.
- W3020239300 hasAuthorship W3020239300A5010781360 @default.
- W3020239300 hasAuthorship W3020239300A5012078711 @default.
- W3020239300 hasAuthorship W3020239300A5023048207 @default.
- W3020239300 hasAuthorship W3020239300A5062440795 @default.
- W3020239300 hasAuthorship W3020239300A5067830885 @default.
- W3020239300 hasBestOaLocation W30202393002 @default.
- W3020239300 hasConcept C105795698 @default.
- W3020239300 hasConcept C106189395 @default.
- W3020239300 hasConcept C111919701 @default.
- W3020239300 hasConcept C119857082 @default.
- W3020239300 hasConcept C121332964 @default.
- W3020239300 hasConcept C126255220 @default.
- W3020239300 hasConcept C127413603 @default.
- W3020239300 hasConcept C154945302 @default.
- W3020239300 hasConcept C159886148 @default.
- W3020239300 hasConcept C162324750 @default.
- W3020239300 hasConcept C163258240 @default.
- W3020239300 hasConcept C175444787 @default.
- W3020239300 hasConcept C181622380 @default.
- W3020239300 hasConcept C195094911 @default.
- W3020239300 hasConcept C2776422217 @default.
- W3020239300 hasConcept C2984634286 @default.
- W3020239300 hasConcept C33923547 @default.
- W3020239300 hasConcept C41008148 @default.
- W3020239300 hasConcept C62520636 @default.
- W3020239300 hasConcept C8272713 @default.