Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020242880> ?p ?o ?g. }
- W3020242880 endingPage "125126" @default.
- W3020242880 startingPage "125126" @default.
- W3020242880 abstract "Precipitation data collected at sub-hourly resolution represents specific challenges for missing data recovery by being largely stochastic in nature and highly unbalanced in the duration of rain vs non-rain. Here we present a two-step analysis utilising current machine learning techniques for imputing precipitation data sampled at 30-minute intervals by devolving the task into (a) the classification of rain or non-rain samples, and (b) regressing the absolute values of predicted rain samples. Investigating 37 weather stations in the UK, this machine learning process produces more accurate predictions for recovering precipitation data than an established surface fitting technique utilising neighbouring rain gauges. Increasing available features for the training of machine learning algorithms increases performance with the integration of weather data at the target site with externally sourced rain gauges providing the highest performance. This method informs machine learning models by utilising information in concurrently collected environmental data to make accurate predictions of missing rain data. Capturing complex non-linear relationships from weakly correlated variables is critical for data recovery at sub-hourly resolutions. Such pipelines for data recovery can be developed and deployed for highly automated and near instantaneous imputation of missing values in ongoing datasets at high temporal resolutions." @default.
- W3020242880 created "2020-05-01" @default.
- W3020242880 creator A5023869617 @default.
- W3020242880 creator A5025545143 @default.
- W3020242880 creator A5043868862 @default.
- W3020242880 creator A5048683271 @default.
- W3020242880 creator A5054046625 @default.
- W3020242880 creator A5078383368 @default.
- W3020242880 creator A5090252538 @default.
- W3020242880 date "2020-09-01" @default.
- W3020242880 modified "2023-09-30" @default.
- W3020242880 title "Imputation of missing sub-hourly precipitation data in a large sensor network: A machine learning approach" @default.
- W3020242880 cites W1502810280 @default.
- W3020242880 cites W1567694985 @default.
- W3020242880 cites W1596717185 @default.
- W3020242880 cites W1666703693 @default.
- W3020242880 cites W1678356000 @default.
- W3020242880 cites W1822348759 @default.
- W3020242880 cites W1913009830 @default.
- W3020242880 cites W1969861235 @default.
- W3020242880 cites W1994864686 @default.
- W3020242880 cites W1997294768 @default.
- W3020242880 cites W2013174740 @default.
- W3020242880 cites W2015568638 @default.
- W3020242880 cites W2023256883 @default.
- W3020242880 cites W2025560597 @default.
- W3020242880 cites W2031032352 @default.
- W3020242880 cites W2036055796 @default.
- W3020242880 cites W2040037974 @default.
- W3020242880 cites W2052461176 @default.
- W3020242880 cites W2054065713 @default.
- W3020242880 cites W2062087947 @default.
- W3020242880 cites W2064186732 @default.
- W3020242880 cites W2064469609 @default.
- W3020242880 cites W2064675550 @default.
- W3020242880 cites W2076166379 @default.
- W3020242880 cites W2077421215 @default.
- W3020242880 cites W2089055951 @default.
- W3020242880 cites W2093879991 @default.
- W3020242880 cites W2095769364 @default.
- W3020242880 cites W2096849238 @default.
- W3020242880 cites W2096863518 @default.
- W3020242880 cites W2111104102 @default.
- W3020242880 cites W2127170577 @default.
- W3020242880 cites W2137983211 @default.
- W3020242880 cites W2147800946 @default.
- W3020242880 cites W2152860223 @default.
- W3020242880 cites W2162313689 @default.
- W3020242880 cites W2165859062 @default.
- W3020242880 cites W2337695112 @default.
- W3020242880 cites W2461098375 @default.
- W3020242880 cites W2517336868 @default.
- W3020242880 cites W2612828053 @default.
- W3020242880 cites W2738964340 @default.
- W3020242880 cites W2773928770 @default.
- W3020242880 cites W2781116019 @default.
- W3020242880 cites W2800819102 @default.
- W3020242880 cites W2888843490 @default.
- W3020242880 cites W2921195453 @default.
- W3020242880 cites W2945659236 @default.
- W3020242880 cites W2954482899 @default.
- W3020242880 doi "https://doi.org/10.1016/j.jhydrol.2020.125126" @default.
- W3020242880 hasPublicationYear "2020" @default.
- W3020242880 type Work @default.
- W3020242880 sameAs 3020242880 @default.
- W3020242880 citedByCount "17" @default.
- W3020242880 countsByYear W30202428802020 @default.
- W3020242880 countsByYear W30202428802021 @default.
- W3020242880 countsByYear W30202428802022 @default.
- W3020242880 countsByYear W30202428802023 @default.
- W3020242880 crossrefType "journal-article" @default.
- W3020242880 hasAuthorship W3020242880A5023869617 @default.
- W3020242880 hasAuthorship W3020242880A5025545143 @default.
- W3020242880 hasAuthorship W3020242880A5043868862 @default.
- W3020242880 hasAuthorship W3020242880A5048683271 @default.
- W3020242880 hasAuthorship W3020242880A5054046625 @default.
- W3020242880 hasAuthorship W3020242880A5078383368 @default.
- W3020242880 hasAuthorship W3020242880A5090252538 @default.
- W3020242880 hasBestOaLocation W30202428802 @default.
- W3020242880 hasConcept C107054158 @default.
- W3020242880 hasConcept C119857082 @default.
- W3020242880 hasConcept C120961793 @default.
- W3020242880 hasConcept C124101348 @default.
- W3020242880 hasConcept C153294291 @default.
- W3020242880 hasConcept C154945302 @default.
- W3020242880 hasConcept C205649164 @default.
- W3020242880 hasConcept C39432304 @default.
- W3020242880 hasConcept C41008148 @default.
- W3020242880 hasConcept C58041806 @default.
- W3020242880 hasConcept C9357733 @default.
- W3020242880 hasConceptScore W3020242880C107054158 @default.
- W3020242880 hasConceptScore W3020242880C119857082 @default.
- W3020242880 hasConceptScore W3020242880C120961793 @default.
- W3020242880 hasConceptScore W3020242880C124101348 @default.
- W3020242880 hasConceptScore W3020242880C153294291 @default.
- W3020242880 hasConceptScore W3020242880C154945302 @default.
- W3020242880 hasConceptScore W3020242880C205649164 @default.
- W3020242880 hasConceptScore W3020242880C39432304 @default.