Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020244590> ?p ?o ?g. }
- W3020244590 endingPage "3509" @default.
- W3020244590 startingPage "3501" @default.
- W3020244590 abstract "Objective: Estimation of the discharge pattern of motor units by electromyography (EMG) decomposition has been applied for neurophysiologic investigations, clinical diagnosis, and human-machine interfacing. However, most of the methods for EMG decomposition are currently applied offline. Here, we propose an approach for high-density surface EMG decomposition in real-time. Methods: A real-time decomposition scheme including two sessions, offline training and online decomposition, is proposed based on the convolutional kernel compensation algorithm. The estimation parameters, separation vectors and the thresholds for spike extraction, are first computed during offline training, and then they are directly applied to estimate motor unit spike trains (MUSTs) during the online decomposition. The estimation parameters are updated with the identification of new discharges to adapt to non-stationary conditions. The decomposition accuracy was validated on simulated EMG signals by convolving synthetic MUSTs with motor unit action potentials (MUAPs). Moreover, the accuracy of the online decomposition was assessed from experimental signals recorded from forearm muscles using a signal-based performance metrics (pulseto-noise ratio, PNR). Main results: The proposed algorithm yielded a high decomposition accuracy and robustness to non-stationary conditions. The accuracy of MUSTs identified from simulated EMG signals was >80% for most conditions. From experimental EMG signals, on average, 12 ± 2 MUSTs were identified from each electrode grid with PNR of 25.0 ± 1.8 dB, corresponding to an estimated decomposition accuracy >75%. Conclusion and Significance: These results indicate the feasibility of real-time identification of motor unit activities non-invasively during variable force contractions, extending the potential applications of high-density EMG as a neural interface." @default.
- W3020244590 created "2020-05-01" @default.
- W3020244590 creator A5040002528 @default.
- W3020244590 creator A5062272467 @default.
- W3020244590 creator A5065669889 @default.
- W3020244590 creator A5078125284 @default.
- W3020244590 creator A5087493531 @default.
- W3020244590 date "2020-12-01" @default.
- W3020244590 modified "2023-10-11" @default.
- W3020244590 title "Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals" @default.
- W3020244590 cites W1481479149 @default.
- W3020244590 cites W1503680843 @default.
- W3020244590 cites W1514261135 @default.
- W3020244590 cites W1809394698 @default.
- W3020244590 cites W1976423785 @default.
- W3020244590 cites W1983351242 @default.
- W3020244590 cites W1987036384 @default.
- W3020244590 cites W2004879773 @default.
- W3020244590 cites W2010714646 @default.
- W3020244590 cites W2042861111 @default.
- W3020244590 cites W2043178411 @default.
- W3020244590 cites W2063366067 @default.
- W3020244590 cites W2093990877 @default.
- W3020244590 cites W2103541050 @default.
- W3020244590 cites W2104904223 @default.
- W3020244590 cites W2118516612 @default.
- W3020244590 cites W2118881827 @default.
- W3020244590 cites W2140885872 @default.
- W3020244590 cites W2143321942 @default.
- W3020244590 cites W2148270081 @default.
- W3020244590 cites W2156441472 @default.
- W3020244590 cites W2156525434 @default.
- W3020244590 cites W2168149181 @default.
- W3020244590 cites W2290981976 @default.
- W3020244590 cites W2338519442 @default.
- W3020244590 cites W2506721812 @default.
- W3020244590 cites W2587122088 @default.
- W3020244590 cites W2610341657 @default.
- W3020244590 cites W2764120354 @default.
- W3020244590 cites W2765431510 @default.
- W3020244590 cites W2766008543 @default.
- W3020244590 cites W2801221833 @default.
- W3020244590 cites W2804395983 @default.
- W3020244590 cites W2902068390 @default.
- W3020244590 cites W2904776416 @default.
- W3020244590 cites W2941862207 @default.
- W3020244590 cites W2945868636 @default.
- W3020244590 cites W2947764326 @default.
- W3020244590 cites W2955075226 @default.
- W3020244590 cites W2969958495 @default.
- W3020244590 doi "https://doi.org/10.1109/tbme.2020.2989311" @default.
- W3020244590 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32324538" @default.
- W3020244590 hasPublicationYear "2020" @default.
- W3020244590 type Work @default.
- W3020244590 sameAs 3020244590 @default.
- W3020244590 citedByCount "37" @default.
- W3020244590 countsByYear W30202445902021 @default.
- W3020244590 countsByYear W30202445902022 @default.
- W3020244590 countsByYear W30202445902023 @default.
- W3020244590 crossrefType "journal-article" @default.
- W3020244590 hasAuthorship W3020244590A5040002528 @default.
- W3020244590 hasAuthorship W3020244590A5062272467 @default.
- W3020244590 hasAuthorship W3020244590A5065669889 @default.
- W3020244590 hasAuthorship W3020244590A5078125284 @default.
- W3020244590 hasAuthorship W3020244590A5087493531 @default.
- W3020244590 hasBestOaLocation W30202445902 @default.
- W3020244590 hasConcept C104267543 @default.
- W3020244590 hasConcept C118552586 @default.
- W3020244590 hasConcept C153180895 @default.
- W3020244590 hasConcept C154945302 @default.
- W3020244590 hasConcept C15744967 @default.
- W3020244590 hasConcept C169760540 @default.
- W3020244590 hasConcept C2777515770 @default.
- W3020244590 hasConcept C2781425072 @default.
- W3020244590 hasConcept C41008148 @default.
- W3020244590 hasConcept C84462506 @default.
- W3020244590 hasConcept C86803240 @default.
- W3020244590 hasConcept C9390403 @default.
- W3020244590 hasConceptScore W3020244590C104267543 @default.
- W3020244590 hasConceptScore W3020244590C118552586 @default.
- W3020244590 hasConceptScore W3020244590C153180895 @default.
- W3020244590 hasConceptScore W3020244590C154945302 @default.
- W3020244590 hasConceptScore W3020244590C15744967 @default.
- W3020244590 hasConceptScore W3020244590C169760540 @default.
- W3020244590 hasConceptScore W3020244590C2777515770 @default.
- W3020244590 hasConceptScore W3020244590C2781425072 @default.
- W3020244590 hasConceptScore W3020244590C41008148 @default.
- W3020244590 hasConceptScore W3020244590C84462506 @default.
- W3020244590 hasConceptScore W3020244590C86803240 @default.
- W3020244590 hasConceptScore W3020244590C9390403 @default.
- W3020244590 hasFunder F4320321001 @default.
- W3020244590 hasFunder F4320321885 @default.
- W3020244590 hasIssue "12" @default.
- W3020244590 hasLocation W30202445901 @default.
- W3020244590 hasLocation W30202445902 @default.
- W3020244590 hasOpenAccess W3020244590 @default.
- W3020244590 hasPrimaryLocation W30202445901 @default.
- W3020244590 hasRelatedWork W1856857651 @default.