Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020290947> ?p ?o ?g. }
- W3020290947 endingPage "115844" @default.
- W3020290947 startingPage "115844" @default.
- W3020290947 abstract "Gas bubbles are introduced in water to absorb or strip volatile substances in a variety of unit operations, for example during (waste)water treatment. To calculate the transfer rate of substances between the liquid phase and the gas phase, different assumptions have been made in literature regarding the gas phase composition and hydraulic pressure, which both vary along the reactor height. In this study, analytical expressions were derived for the total (macroscopic) liquid-gas transfer rate, using either the complete gradients of the mole fraction and pressure (comprehensive approach) or a uniform value, for one or both of them. Simulations with the comprehensive model were performed to understand the effect of the type of volatile substance and of the reactor design and operating conditions on the total liquid-gas transfer rate. These effects were found to be highly interactive and often non-linear. Next, the simulation results of the comprehensive model were compared with those from models that assume either a uniform mole fraction or a uniform pressure in the complete reactor volume. This illustrated that for soluble substances, the mole fraction gradient strongly affects the total liquid-gas transfer rate, while the pressure gradient became only important under operating conditions that promote stripping (i.e., for a high concentration in the liquid phase and low concentration in the inlet gas). For very poorly soluble substances, the pressure became more important under conditions that promote absorption. These results on the importance of the mole fraction and pressure gradients remained equally valid when explicitly considering a typical variation of the volumetric overall transfer coefficient (KLa) along the reactor height. Finally, a simple and fast procedure was made available through a spreadsheet to select appropriate simplifying assumptions in reactor or plant-wide models. By applying the procedure to oxygen (O2), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and nitrogen gas (N2) in an aerobic biological wastewater treatment reactor, it was demonstrated that some common simplifications can lead to significant errors, for which corrections were proposed." @default.
- W3020290947 created "2020-05-01" @default.
- W3020290947 creator A5026999298 @default.
- W3020290947 creator A5049300920 @default.
- W3020290947 creator A5062523715 @default.
- W3020290947 date "2020-07-01" @default.
- W3020290947 modified "2023-09-30" @default.
- W3020290947 title "When and why do gradients of the gas phase composition and pressure affect liquid-gas transfer?" @default.
- W3020290947 cites W1529244862 @default.
- W3020290947 cites W1802426388 @default.
- W3020290947 cites W1970944172 @default.
- W3020290947 cites W1977666436 @default.
- W3020290947 cites W1987468010 @default.
- W3020290947 cites W1991400010 @default.
- W3020290947 cites W1993805116 @default.
- W3020290947 cites W1997961774 @default.
- W3020290947 cites W2025374304 @default.
- W3020290947 cites W2033690730 @default.
- W3020290947 cites W2034508329 @default.
- W3020290947 cites W2035278593 @default.
- W3020290947 cites W2035616341 @default.
- W3020290947 cites W2053059515 @default.
- W3020290947 cites W2053282904 @default.
- W3020290947 cites W2053697113 @default.
- W3020290947 cites W2060904973 @default.
- W3020290947 cites W2061496530 @default.
- W3020290947 cites W2065725337 @default.
- W3020290947 cites W2068082608 @default.
- W3020290947 cites W2116904877 @default.
- W3020290947 cites W2124336945 @default.
- W3020290947 cites W2136719299 @default.
- W3020290947 cites W2140747171 @default.
- W3020290947 cites W2143285672 @default.
- W3020290947 cites W2149312615 @default.
- W3020290947 cites W2304702132 @default.
- W3020290947 cites W2339904728 @default.
- W3020290947 cites W2409534352 @default.
- W3020290947 cites W2518883267 @default.
- W3020290947 cites W2527592536 @default.
- W3020290947 cites W2531549707 @default.
- W3020290947 cites W2586062141 @default.
- W3020290947 cites W2617913836 @default.
- W3020290947 cites W2765640468 @default.
- W3020290947 cites W2803801865 @default.
- W3020290947 cites W2894760685 @default.
- W3020290947 cites W2900040770 @default.
- W3020290947 cites W2904855385 @default.
- W3020290947 cites W2906808820 @default.
- W3020290947 cites W2930775704 @default.
- W3020290947 cites W2935961947 @default.
- W3020290947 cites W4210859848 @default.
- W3020290947 doi "https://doi.org/10.1016/j.watres.2020.115844" @default.
- W3020290947 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32361287" @default.
- W3020290947 hasPublicationYear "2020" @default.
- W3020290947 type Work @default.
- W3020290947 sameAs 3020290947 @default.
- W3020290947 citedByCount "13" @default.
- W3020290947 countsByYear W30202909472021 @default.
- W3020290947 countsByYear W30202909472022 @default.
- W3020290947 countsByYear W30202909472023 @default.
- W3020290947 crossrefType "journal-article" @default.
- W3020290947 hasAuthorship W3020290947A5026999298 @default.
- W3020290947 hasAuthorship W3020290947A5049300920 @default.
- W3020290947 hasAuthorship W3020290947A5062523715 @default.
- W3020290947 hasConcept C113196181 @default.
- W3020290947 hasConcept C121332964 @default.
- W3020290947 hasConcept C125287762 @default.
- W3020290947 hasConcept C147789679 @default.
- W3020290947 hasConcept C149629883 @default.
- W3020290947 hasConcept C159985019 @default.
- W3020290947 hasConcept C175721412 @default.
- W3020290947 hasConcept C178790620 @default.
- W3020290947 hasConcept C185592680 @default.
- W3020290947 hasConcept C192562407 @default.
- W3020290947 hasConcept C20556612 @default.
- W3020290947 hasConcept C36591836 @default.
- W3020290947 hasConcept C43617362 @default.
- W3020290947 hasConcept C44280652 @default.
- W3020290947 hasConcept C51038369 @default.
- W3020290947 hasConcept C65590680 @default.
- W3020290947 hasConcept C97355855 @default.
- W3020290947 hasConceptScore W3020290947C113196181 @default.
- W3020290947 hasConceptScore W3020290947C121332964 @default.
- W3020290947 hasConceptScore W3020290947C125287762 @default.
- W3020290947 hasConceptScore W3020290947C147789679 @default.
- W3020290947 hasConceptScore W3020290947C149629883 @default.
- W3020290947 hasConceptScore W3020290947C159985019 @default.
- W3020290947 hasConceptScore W3020290947C175721412 @default.
- W3020290947 hasConceptScore W3020290947C178790620 @default.
- W3020290947 hasConceptScore W3020290947C185592680 @default.
- W3020290947 hasConceptScore W3020290947C192562407 @default.
- W3020290947 hasConceptScore W3020290947C20556612 @default.
- W3020290947 hasConceptScore W3020290947C36591836 @default.
- W3020290947 hasConceptScore W3020290947C43617362 @default.
- W3020290947 hasConceptScore W3020290947C44280652 @default.
- W3020290947 hasConceptScore W3020290947C51038369 @default.
- W3020290947 hasConceptScore W3020290947C65590680 @default.
- W3020290947 hasConceptScore W3020290947C97355855 @default.